Optimize Auto-Annotation with all args (#17315)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
2a1fabcf83
commit
bf1d076e20
3 changed files with 19 additions and 2 deletions
|
|
@ -217,6 +217,8 @@ To auto-annotate your dataset with the Ultralytics framework, use the `auto_anno
|
|||
| `conf` | `float`, optional | Confidence threshold for detection model; default is 0.25. | `0.25` |
|
||||
| `iou` | `float`, optional | IoU threshold for filtering overlapping boxes in detection results; default is 0.45. | `0.45` |
|
||||
| `imgsz` | `int`, optional | Input image resize dimension; default is 640. | `640` |
|
||||
| `max_det` | `int`, optional | Limits detections per image to control outputs in dense scenes. | `300` |
|
||||
| `classes` | `list`, optional | Filters predictions to specified class IDs, returning only relevant detections. | `None` |
|
||||
| `output_dir` | `str`, None, optional | Directory to save the annotated results. Defaults to a 'labels' folder in the same directory as 'data'. | `None` |
|
||||
|
||||
The `auto_annotate` function takes the path to your images, with optional arguments for specifying the pre-trained detection and SAM segmentation models, the device to run the models on, and the output directory for saving the annotated results.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue