ultralytics 8.2.5 New 🌟 Parking Management Solution (#10385)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Muhammad Rizwan Munawar 2024-04-29 13:58:12 +05:00 committed by GitHub
parent 156b6be8d3
commit bc9fd45cdf
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 451 additions and 81 deletions

View file

@ -190,9 +190,7 @@ class Heatmap:
for box, cls, track_id in zip(self.boxes, self.clss, self.track_ids):
# Store class info
if self.names[cls] not in self.class_wise_count:
if len(self.names[cls]) > 5:
self.names[cls] = self.names[cls][:5]
self.class_wise_count[self.names[cls]] = {"in": 0, "out": 0}
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}
if self.shape == "circle":
center = (int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2))
@ -225,10 +223,10 @@ class Heatmap:
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["in"] += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["out"] += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
# Count objects using line
elif len(self.count_reg_pts) == 2:
@ -239,10 +237,10 @@ class Heatmap:
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["in"] += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["out"] += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
else:
for box, cls in zip(self.boxes, self.clss):
@ -264,28 +262,21 @@ class Heatmap:
heatmap_normalized = cv2.normalize(self.heatmap, None, 0, 255, cv2.NORM_MINMAX)
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), self.colormap)
label = "Ultralytics Analytics \t"
labels_dict = {}
for key, value in self.class_wise_count.items():
if value["in"] != 0 or value["out"] != 0:
if value["IN"] != 0 or value["OUT"] != 0:
if not self.view_in_counts and not self.view_out_counts:
label = None
continue
elif not self.view_in_counts:
label += f"{str.capitalize(key)}: IN {value['in']} \t"
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
elif not self.view_out_counts:
label += f"{str.capitalize(key)}: OUT {value['out']} \t"
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
else:
label += f"{str.capitalize(key)}: IN {value['in']} OUT {value['out']} \t"
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
label = label.rstrip()
label = label.split("\t")
if self.count_reg_pts is not None and label is not None:
self.annotator.display_counts(
counts=label,
count_txt_color=self.count_txt_color,
count_bg_color=self.count_bg_color,
)
if labels_dict is not None:
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)
self.im0 = cv2.addWeighted(self.im0, 1 - self.heatmap_alpha, heatmap_colored, self.heatmap_alpha, 0)

View file

@ -181,9 +181,7 @@ class ObjectCounter:
# Store class info
if self.names[cls] not in self.class_wise_count:
if len(self.names[cls]) > 5:
self.names[cls] = self.names[cls][:5]
self.class_wise_count[self.names[cls]] = {"in": 0, "out": 0}
self.class_wise_count[self.names[cls]] = {"IN": 0, "OUT": 0}
# Draw Tracks
track_line = self.track_history[track_id]
@ -210,10 +208,10 @@ class ObjectCounter:
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["in"] += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["out"] += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
# Count objects using line
elif len(self.reg_pts) == 2:
@ -224,33 +222,26 @@ class ObjectCounter:
if (box[0] - prev_position[0]) * (self.counting_region.centroid.x - prev_position[0]) > 0:
self.in_counts += 1
self.class_wise_count[self.names[cls]]["in"] += 1
self.class_wise_count[self.names[cls]]["IN"] += 1
else:
self.out_counts += 1
self.class_wise_count[self.names[cls]]["out"] += 1
self.class_wise_count[self.names[cls]]["OUT"] += 1
label = "Ultralytics Analytics \t"
labels_dict = {}
for key, value in self.class_wise_count.items():
if value["in"] != 0 or value["out"] != 0:
if value["IN"] != 0 or value["OUT"] != 0:
if not self.view_in_counts and not self.view_out_counts:
label = None
continue
elif not self.view_in_counts:
label += f"{str.capitalize(key)}: IN {value['in']} \t"
labels_dict[str.capitalize(key)] = f"OUT {value['OUT']}"
elif not self.view_out_counts:
label += f"{str.capitalize(key)}: OUT {value['out']} \t"
labels_dict[str.capitalize(key)] = f"IN {value['IN']}"
else:
label += f"{str.capitalize(key)}: IN {value['in']} OUT {value['out']} \t"
labels_dict[str.capitalize(key)] = f"IN {value['IN']} OUT {value['OUT']}"
label = label.rstrip()
label = label.split("\t")
if label is not None:
self.annotator.display_counts(
counts=label,
count_txt_color=self.count_txt_color,
count_bg_color=self.count_bg_color,
)
if labels_dict is not None:
self.annotator.display_analytics(self.im0, labels_dict, self.count_txt_color, self.count_bg_color, 10)
def display_frames(self):
"""Display frame."""

View file

@ -0,0 +1,235 @@
import json
from tkinter import filedialog, messagebox
import cv2
import numpy as np
from PIL import Image, ImageTk
from ultralytics.utils.checks import check_imshow, check_requirements
from ultralytics.utils.plotting import Annotator
check_requirements("tkinter")
import tkinter as tk
class ParkingPtsSelection:
def __init__(self, master):
# Initialize window and widgets.
self.master = master
master.title("Ultralytics Parking Zones Points Selector")
self.initialize_ui()
# Initialize properties
self.image_path = None
self.image = None
self.canvas_image = None
self.canvas = None
self.bounding_boxes = []
self.current_box = []
self.img_width = 0
self.img_height = 0
# Constants
self.canvas_max_width = 1280
self.canvas_max_height = 720
def initialize_ui(self):
"""Setup UI components."""
# Setup buttons
button_frame = tk.Frame(self.master)
button_frame.pack(side=tk.TOP)
tk.Button(button_frame, text="Upload Image", command=self.upload_image).grid(row=0, column=0)
tk.Button(button_frame, text="Remove Last BBox", command=self.remove_last_bounding_box).grid(row=0, column=1)
tk.Button(button_frame, text="Save", command=self.save_to_json).grid(row=0, column=2)
# Setup canvas for image display
self.canvas = tk.Canvas(self.master, bg="white")
self.canvas.pack(side=tk.BOTTOM)
self.canvas.bind("<Button-1>", self.on_canvas_click)
def upload_image(self):
"""Upload an image and resize it to fit canvas."""
self.image_path = filedialog.askopenfilename(filetypes=[("Image Files", "*.png;*.jpg;*.jpeg")])
if not self.image_path:
return
self.image = Image.open(self.image_path)
self.img_width, self.img_height = self.image.size
# Calculate the aspect ratio and resize image
aspect_ratio = self.img_width / self.img_height
if aspect_ratio > 1:
# Landscape orientation
canvas_width = min(self.canvas_max_width, self.img_width)
canvas_height = int(canvas_width / aspect_ratio)
else:
# Portrait orientation
canvas_height = min(self.canvas_max_height, self.img_height)
canvas_width = int(canvas_height * aspect_ratio)
self.canvas.config(width=canvas_width, height=canvas_height)
resized_image = self.image.resize((canvas_width, canvas_height), Image.LANCZOS)
self.canvas_image = ImageTk.PhotoImage(resized_image)
self.canvas.create_image(0, 0, anchor=tk.NW, image=self.canvas_image)
# Reset bounding boxes and current box
self.bounding_boxes = []
self.current_box = []
def on_canvas_click(self, event):
"""Handle mouse clicks on canvas to create points for bounding boxes."""
self.current_box.append((event.x, event.y))
if len(self.current_box) == 4:
self.bounding_boxes.append(self.current_box)
self.draw_bounding_box(self.current_box)
self.current_box = []
def draw_bounding_box(self, box):
"""Draw bounding box on canvas."""
for i in range(4):
x1, y1 = box[i]
x2, y2 = box[(i + 1) % 4]
self.canvas.create_line(x1, y1, x2, y2, fill="blue", width=2)
def remove_last_bounding_box(self):
"""Remove the last drawn bounding box from canvas."""
if self.bounding_boxes:
self.bounding_boxes.pop() # Remove the last bounding box
self.canvas.delete("all") # Clear the canvas
self.canvas.create_image(0, 0, anchor=tk.NW, image=self.canvas_image) # Redraw the image
# Redraw all bounding boxes
for box in self.bounding_boxes:
self.draw_bounding_box(box)
messagebox.showinfo("Success", "Last bounding box removed.")
else:
messagebox.showwarning("Warning", "No bounding boxes to remove.")
def save_to_json(self):
canvas_width, canvas_height = self.canvas.winfo_width(), self.canvas.winfo_height()
width_scaling_factor = self.img_width / canvas_width
height_scaling_factor = self.img_height / canvas_height
bounding_boxes_data = []
for box in self.bounding_boxes:
print("Bounding Box ", bounding_boxes_data)
rescaled_box = []
for x, y in box:
rescaled_x = int(x * width_scaling_factor)
rescaled_y = int(y * height_scaling_factor)
rescaled_box.append((rescaled_x, rescaled_y))
bounding_boxes_data.append({"points": rescaled_box})
with open("bounding_boxes.json", "w") as json_file:
json.dump(bounding_boxes_data, json_file, indent=4)
messagebox.showinfo("Success", "Bounding boxes saved to bounding_boxes.json")
class ParkingManagement:
def __init__(
self,
model_path,
txt_color=(0, 0, 0),
bg_color=(255, 255, 255),
occupied_region_color=(0, 255, 0),
available_region_color=(0, 0, 255),
margin=10,
):
# Model path and initialization
self.model_path = model_path
self.model = self.load_model()
# Labels dictionary
self.labels_dict = {"Occupancy": 0, "Available": 0}
# Visualization details
self.margin = margin
self.bg_color = bg_color
self.txt_color = txt_color
self.occupied_region_color = occupied_region_color
self.available_region_color = available_region_color
self.window_name = "Ultralytics YOLOv8 Parking Management System"
# Check if environment support imshow
self.env_check = check_imshow(warn=True)
def load_model(self):
"""Load the Ultralytics YOLOv8 model for inference and analytics."""
from ultralytics import YOLO
self.model = YOLO(self.model_path)
return self.model
def parking_regions_extraction(self, json_file):
"""
Extract parking regions from json file.
Args:
json_file (str): file that have all parking slot points
"""
with open(json_file, "r") as json_file:
json_data = json.load(json_file)
return json_data
def process_data(self, json_data, im0, boxes, clss):
"""
Process the model data for parking lot management.
Args:
json_data (str): json data for parking lot management
im0 (ndarray): inference image
boxes (list): bounding boxes data
clss (list): bounding boxes classes list
Returns:
filled_slots (int): total slots that are filled in parking lot
empty_slots (int): total slots that are available in parking lot
"""
annotator = Annotator(im0)
total_slots, filled_slots = len(json_data), 0
empty_slots = total_slots
for region in json_data:
points = region["points"]
points_array = np.array(points, dtype=np.int32).reshape((-1, 1, 2))
region_occupied = False
for box, cls in zip(boxes, clss):
x_center = int((box[0] + box[2]) / 2)
y_center = int((box[1] + box[3]) / 2)
text = f"{self.model.names[int(cls)]}"
annotator.display_objects_labels(
im0, text, self.txt_color, self.bg_color, x_center, y_center, self.margin
)
dist = cv2.pointPolygonTest(points_array, (x_center, y_center), False)
if dist >= 0:
region_occupied = True
break
color = self.occupied_region_color if region_occupied else self.available_region_color
cv2.polylines(im0, [points_array], isClosed=True, color=color, thickness=2)
if region_occupied:
filled_slots += 1
empty_slots -= 1
self.labels_dict["Occupancy"] = filled_slots
self.labels_dict["Available"] = empty_slots
annotator.display_analytics(im0, self.labels_dict, self.txt_color, self.bg_color, self.margin)
def display_frames(self, im0):
"""
Display frame.
Args:
im0 (ndarray): inference image
"""
if self.env_check:
cv2.namedWindow(self.window_name)
cv2.imshow(self.window_name, im0)
# Break Window
if cv2.waitKey(1) & 0xFF == ord("q"):
return