Docs partial mdformat improvements (#7378)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2024-01-07 17:13:42 +01:00 committed by GitHub
parent ed73c0fedc
commit bb1326a8ea
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
52 changed files with 231 additions and 261 deletions

View file

@ -12,10 +12,8 @@ Oriented object detection goes a step further than object detection and introduc
The output of an oriented object detector is a set of rotated bounding boxes that exactly enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.
<!-- youtube video link for obb task -->
!!! Tip "Tip"
YOLOv8 Obb models use the `-obb` suffix, i.e. `yolov8n-obb.pt` and are pretrained on [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml).
@ -36,15 +34,13 @@ YOLOv8 pretrained Obb models are shown here, which are pretrained on the [DOTAv1
<!-- TODO: should we report multi-scale results only as they're better or both multi-scale and single-scale. -->
- **mAP<sup>val</sup>** values are for single-model single-scale on [DOTAv1 test](http://cocodataset.org) dataset.
<br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0`
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
instance.
<br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
- **mAP<sup>val</sup>** values are for single-model single-scale on [DOTAv1 test](http://cocodataset.org) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0`
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
## Train
<!-- TODO: probably we should create a sample dataset like coco128.yaml, named dota128.yaml? -->
Train YOLOv8n-obb on the dota128.yaml dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
!!! Example