ultralytics 8.3.12 SAM and SAM2 multi-point prompts (#16643)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Mohammed Yasin 2024-10-13 23:20:40 +08:00 committed by GitHub
parent 1c4d788aa1
commit b89d6f4070
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 79 additions and 13 deletions

View file

@ -90,8 +90,17 @@ You can download the model [here](https://github.com/ChaoningZhang/MobileSAM/blo
# Load the model
model = SAM("mobile_sam.pt")
# Predict a segment based on a point prompt
# Predict a segment based on a single point prompt
model.predict("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])
# Predict multiple segments based on multiple points prompt
model.predict("ultralytics/assets/zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1])
# Predict a segment based on multiple points prompt per object
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 1]])
# Predict a segment using both positive and negative prompts.
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 0]])
```
### Box Prompt
@ -106,8 +115,17 @@ You can download the model [here](https://github.com/ChaoningZhang/MobileSAM/blo
# Load the model
model = SAM("mobile_sam.pt")
# Predict a segment based on a box prompt
model.predict("ultralytics/assets/zidane.jpg", bboxes=[439, 437, 524, 709])
# Predict a segment based on a single point prompt
model.predict("ultralytics/assets/zidane.jpg", points=[900, 370], labels=[1])
# Predict mutiple segments based on multiple points prompt
model.predict("ultralytics/assets/zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1])
# Predict a segment based on multiple points prompt per object
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 1]])
# Predict a segment using both positive and negative prompts.
model.predict("ultralytics/assets/zidane.jpg", points=[[[400, 370], [900, 370]]], labels=[[1, 0]])
```
We have implemented `MobileSAM` and `SAM` using the same API. For more usage information, please see the [SAM page](sam.md).