ultralytics 8.0.212 add Windows UTF-8 support (#6407)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Abirami Vina <abirami.vina@gmail.com>
This commit is contained in:
parent
14c05f0dd1
commit
b6baae584c
19 changed files with 103 additions and 113 deletions
|
|
@ -71,11 +71,11 @@ You can use RT-DETR for object detection tasks using the `ultralytics` pip packa
|
|||
|
||||
### Supported Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :heavy_check_mark: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
|
||||
## Citations and Acknowledgements
|
||||
|
||||
|
|
|
|||
|
|
@ -131,11 +131,11 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
|
|||
|
||||
## Operating Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :x: |
|
||||
| Training | :x: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ❌ |
|
||||
| Training | ❌ |
|
||||
|
||||
## SAM comparison vs YOLOv8
|
||||
|
||||
|
|
|
|||
|
|
@ -94,11 +94,11 @@ The YOLO-NAS models are primarily designed for object detection tasks. You can d
|
|||
|
||||
The YOLO-NAS models support both inference and validation modes, allowing you to predict and validate results with ease. Training mode, however, is currently not supported.
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :x: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ❌ |
|
||||
|
||||
Harness the power of the YOLO-NAS models to drive your object detection tasks to new heights of performance and speed.
|
||||
|
||||
|
|
|
|||
|
|
@ -28,11 +28,11 @@ YOLOv5u represents an advancement in object detection methodologies. Originating
|
|||
|
||||
## Supported Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :heavy_check_mark: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
|
||||
!!! Performance
|
||||
|
||||
|
|
|
|||
|
|
@ -85,11 +85,11 @@ You can use YOLOv6 for object detection tasks using the Ultralytics pip package.
|
|||
|
||||
## Supported Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :heavy_check_mark: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
|
||||
## Citations and Acknowledgements
|
||||
|
||||
|
|
|
|||
|
|
@ -30,11 +30,11 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
|
||||
## Supported Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :heavy_check_mark: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
|
||||
!!! Performance
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue