ultralytics 8.0.212 add Windows UTF-8 support (#6407)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Abirami Vina <abirami.vina@gmail.com>
This commit is contained in:
parent
14c05f0dd1
commit
b6baae584c
19 changed files with 103 additions and 113 deletions
|
|
@ -1,6 +1,6 @@
|
|||
---
|
||||
comments: true
|
||||
Description: A guide to help determine which deployment option to choose for your YOLOv8 model, including essential considerations.
|
||||
description: A guide to help determine which deployment option to choose for your YOLOv8 model, including essential considerations.
|
||||
keywords: YOLOv8, Deployment, PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow, Export
|
||||
---
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
---
|
||||
comments: true
|
||||
Description: A comprehensive guide on various performance metrics related to YOLOv8, their significance, and how to interpret them.
|
||||
description: A comprehensive guide on various performance metrics related to YOLOv8, their significance, and how to interpret them.
|
||||
keywords: YOLOv8, Performance metrics, Object detection, Intersection over Union (IoU), Average Precision (AP), Mean Average Precision (mAP), Precision, Recall, Validation mode, Ultralytics
|
||||
---
|
||||
|
||||
|
|
|
|||
|
|
@ -133,7 +133,7 @@ You can control the number of image predictions that Comet ML logs during your e
|
|||
```python
|
||||
import os
|
||||
os.environ["COMET_MAX_IMAGE_PREDICTIONS"] = "200"
|
||||
```
|
||||
```
|
||||
|
||||
### Batch Logging Interval
|
||||
|
||||
|
|
|
|||
|
|
@ -71,11 +71,11 @@ You can use RT-DETR for object detection tasks using the `ultralytics` pip packa
|
|||
|
||||
### Supported Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :heavy_check_mark: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
|
||||
## Citations and Acknowledgements
|
||||
|
||||
|
|
|
|||
|
|
@ -131,11 +131,11 @@ The Segment Anything Model can be employed for a multitude of downstream tasks t
|
|||
|
||||
## Operating Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :x: |
|
||||
| Training | :x: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ❌ |
|
||||
| Training | ❌ |
|
||||
|
||||
## SAM comparison vs YOLOv8
|
||||
|
||||
|
|
|
|||
|
|
@ -94,11 +94,11 @@ The YOLO-NAS models are primarily designed for object detection tasks. You can d
|
|||
|
||||
The YOLO-NAS models support both inference and validation modes, allowing you to predict and validate results with ease. Training mode, however, is currently not supported.
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :x: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ❌ |
|
||||
|
||||
Harness the power of the YOLO-NAS models to drive your object detection tasks to new heights of performance and speed.
|
||||
|
||||
|
|
|
|||
|
|
@ -28,11 +28,11 @@ YOLOv5u represents an advancement in object detection methodologies. Originating
|
|||
|
||||
## Supported Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :heavy_check_mark: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
|
||||
!!! Performance
|
||||
|
||||
|
|
|
|||
|
|
@ -85,11 +85,11 @@ You can use YOLOv6 for object detection tasks using the Ultralytics pip package.
|
|||
|
||||
## Supported Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :heavy_check_mark: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
|
||||
## Citations and Acknowledgements
|
||||
|
||||
|
|
|
|||
|
|
@ -30,11 +30,11 @@ YOLOv8 is the latest iteration in the YOLO series of real-time object detectors,
|
|||
|
||||
## Supported Modes
|
||||
|
||||
| Mode | Supported |
|
||||
|------------|--------------------|
|
||||
| Inference | :heavy_check_mark: |
|
||||
| Validation | :heavy_check_mark: |
|
||||
| Training | :heavy_check_mark: |
|
||||
| Mode | Supported |
|
||||
|------------|-----------|
|
||||
| Inference | ✅ |
|
||||
| Validation | ✅ |
|
||||
| Training | ✅ |
|
||||
|
||||
!!! Performance
|
||||
|
||||
|
|
|
|||
|
|
@ -148,12 +148,13 @@ The Ultralytics command line interface (CLI) allows for simple single-line comma
|
|||
Ultralytics `yolo` commands use the following syntax:
|
||||
```bash
|
||||
yolo TASK MODE ARGS
|
||||
|
||||
Where TASK (optional) is one of [detect, segment, classify]
|
||||
MODE (required) is one of [train, val, predict, export, track]
|
||||
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
|
||||
```
|
||||
See all ARGS in the full [Configuration Guide](usage/cfg.md) or with `yolo cfg`
|
||||
|
||||
- `TASK` (optional) is one of ([detect](tasks/detect.md), [segment](tasks/segment.md), [classify](tasks/classify.md), [pose](tasks/pose.md))
|
||||
- `MODE` (required) is one of ([train](modes/train.md), [val](modes/val.md), [predict](modes/predict.md), [export](modes/export.md), [track](modes/track.md))
|
||||
- `ARGS` (optional) are `arg=value` pairs like `imgsz=640` that override defaults.
|
||||
|
||||
See all `ARGS` in the full [Configuration Guide](usage/cfg.md) or with the `yolo cfg` CLI command.
|
||||
|
||||
=== "Train"
|
||||
|
||||
|
|
@ -197,11 +198,12 @@ The Ultralytics command line interface (CLI) allows for simple single-line comma
|
|||
|
||||
!!! warning "Warning"
|
||||
|
||||
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces ` ` between pairs. Do not use `--` argument prefixes or commas `,` between arguments.
|
||||
Arguments must be passed as `arg=val` pairs, split by an equals `=` sign and delimited by spaces between pairs. Do not use `--` argument prefixes or commas `,` between arguments.
|
||||
|
||||
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅
|
||||
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌
|
||||
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌
|
||||
- `yolo predict model=yolov8n.pt imgsz=640 conf=0.25` ✅
|
||||
- `yolo predict model yolov8n.pt imgsz 640 conf 0.25` ❌ (missing `=`)
|
||||
- `yolo predict model=yolov8n.pt, imgsz=640, conf=0.25` ❌ (do not use `,`)
|
||||
- `yolo predict --model yolov8n.pt --imgsz 640 --conf 0.25` ❌ (do not use `--`)
|
||||
|
||||
[CLI Guide](usage/cli.md){ .md-button .md-button--primary}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,3 +1,8 @@
|
|||
---
|
||||
description: Dive into the intricacies of YOLO tasks.py. Learn about DetectionModel, PoseModel and more for powerful AI development.
|
||||
keywords: Ultralytics, YOLO, nn tasks, DetectionModel, PoseModel, RTDETRDetectionModel, model weights, parse model, AI development
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/nn/tasks.py`
|
||||
|
||||
!!! note
|
||||
|
|
|
|||
|
|
@ -21,10 +21,6 @@ keywords: Ultralytics, Utils, utilitarian functions, colorstr, yaml_save, set_lo
|
|||
## ::: ultralytics.utils.IterableSimpleNamespace
|
||||
<br><br>
|
||||
|
||||
---
|
||||
## ::: ultralytics.utils.EmojiFilter
|
||||
<br><br>
|
||||
|
||||
---
|
||||
## ::: ultralytics.utils.ThreadingLocked
|
||||
<br><br>
|
||||
|
|
|
|||
|
|
@ -1,3 +1,8 @@
|
|||
---
|
||||
description: Deploy ML models effortlessly with Ultralytics TritonRemoteModel. Simplify serving with our comprehensive utils guide.
|
||||
keywords: Ultralytics, YOLO, TritonRemoteModel, machine learning, model serving, deployment, utils, documentation
|
||||
---
|
||||
|
||||
# Reference for `ultralytics/utils/triton.py`
|
||||
|
||||
!!! note
|
||||
|
|
|
|||
|
|
@ -23,10 +23,9 @@ class MarkdownLinkFixer:
|
|||
self.update_links = update_links
|
||||
self.update_frontmatter = update_frontmatter
|
||||
self.update_iframes = update_iframes
|
||||
self.md_link_regex = re.compile(r'\[([^\]]+)\]\(([^:\)]+)\.md\)')
|
||||
self.front_matter_regex = re.compile(r'^(comments|description|keywords):.*$', re.MULTILINE)
|
||||
self.md_link_regex = re.compile(r'\[([^]]+)]\(([^:)]+)\.md\)')
|
||||
self.translations = {
|
||||
'zh': ['评论', '描述', '关键词'], # Mandarin Chinese (Simplified)
|
||||
'zh': ['评论', '描述', '关键词'], # Mandarin Chinese (Simplified) warning, sometimes translates as 关键字
|
||||
'es': ['comentarios', 'descripción', 'palabras clave'], # Spanish
|
||||
'ru': ['комментарии', 'описание', 'ключевые слова'], # Russian
|
||||
'pt': ['comentários', 'descrição', 'palavras-chave'], # Portuguese
|
||||
|
|
@ -44,15 +43,17 @@ class MarkdownLinkFixer:
|
|||
for term, eng_key in zip(terms, english_keys):
|
||||
if eng_key == 'comments':
|
||||
# Replace comments key and set its value to 'true'
|
||||
content = re.sub(rf'{term} *:.*', f'{eng_key}: true', content)
|
||||
content = re.sub(rf'{term} *[::].*', f'{eng_key}: true', content)
|
||||
else:
|
||||
content = re.sub(rf'{term} *:', f'{eng_key}:', content)
|
||||
content = re.sub(rf'{term} *[::] *', f'{eng_key}: ', content)
|
||||
|
||||
return content
|
||||
|
||||
def update_iframe(self, content):
|
||||
@staticmethod
|
||||
def update_iframe(content):
|
||||
"""Update the 'allow' attribute of iframe if it does not contain the specific English permissions."""
|
||||
english_permissions = 'accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share'
|
||||
english_permissions = \
|
||||
'accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share'
|
||||
pattern = re.compile(f'allow="(?!{re.escape(english_permissions)}).+?"')
|
||||
return pattern.sub(f'allow="{english_permissions}"', content)
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
---
|
||||
评论:真
|
||||
描述:探索使用pip、conda、git和Docker安装Ultralytics的各种方法。了解如何在命令行界面或Python项目中使用Ultralytics。
|
||||
关键字:Ultralytics安装,pip安装Ultralytics,Docker安装Ultralytics,Ultralytics命令行界面,Ultralytics Python接口
|
||||
comments: true
|
||||
description: 探索使用pip、conda、git和Docker安装Ultralytics的各种方法。了解如何在命令行界面或Python项目中使用Ultralytics。
|
||||
keywords: Ultralytics安装,pip安装Ultralytics,Docker安装Ultralytics,Ultralytics命令行界面,Ultralytics Python接口
|
||||
---
|
||||
|
||||
## 安装Ultralytics
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue