ultralytics 8.3.65 Rockchip RKNN Integration for Ultralytics YOLO models (#16308)

Signed-off-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: Burhan <62214284+Burhan-Q@users.noreply.github.com>
Co-authored-by: Lakshantha Dissanayake <lakshantha@ultralytics.com>
Co-authored-by: Burhan <Burhan-Q@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com>
Co-authored-by: Lakshantha Dissanayake <lakshanthad@yahoo.com>
Co-authored-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Ivor Zhu 2025-01-20 20:25:54 -05:00 committed by GitHub
parent 617dea8e25
commit b5e0cee943
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
41 changed files with 390 additions and 118 deletions

View file

@ -19,6 +19,7 @@ PaddlePaddle | `paddle` | yolo11n_paddle_model/
MNN | `mnn` | yolo11n.mnn
NCNN | `ncnn` | yolo11n_ncnn_model/
IMX | `imx` | yolo11n_imx_model/
RKNN | `rknn` | yolo11n_rknn_model/
Requirements:
$ pip install "ultralytics[export]"
@ -78,11 +79,13 @@ from ultralytics.nn.tasks import DetectionModel, SegmentationModel, WorldModel
from ultralytics.utils import (
ARM64,
DEFAULT_CFG,
IS_COLAB,
IS_JETSON,
LINUX,
LOGGER,
MACOS,
PYTHON_VERSION,
RKNN_CHIPS,
ROOT,
WINDOWS,
__version__,
@ -122,6 +125,7 @@ def export_formats():
["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
["IMX", "imx", "_imx_model", True, True, ["int8"]],
["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name"]],
]
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
@ -226,22 +230,10 @@ class Exporter:
flags = [x == fmt for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
(
jit,
onnx,
xml,
engine,
coreml,
saved_model,
pb,
tflite,
edgetpu,
tfjs,
paddle,
mnn,
ncnn,
imx,
) = flags # export booleans
(jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, mnn, ncnn, imx, rknn) = (
flags # export booleans
)
is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
# Device
@ -277,6 +269,16 @@ class Exporter:
if self.args.optimize:
assert not ncnn, "optimize=True not compatible with format='ncnn', i.e. use optimize=False"
assert self.device.type == "cpu", "optimize=True not compatible with cuda devices, i.e. use device='cpu'"
if rknn:
if not self.args.name:
LOGGER.warning(
"WARNING ⚠️ Rockchip RKNN export requires a missing 'name' arg for processor type. Using default name='rk3588'."
)
self.args.name = "rk3588"
self.args.name = self.args.name.lower()
assert self.args.name in RKNN_CHIPS, (
f"Invalid processor name '{self.args.name}' for Rockchip RKNN export. Valid names are {RKNN_CHIPS}."
)
if self.args.int8 and tflite:
assert not getattr(model, "end2end", False), "TFLite INT8 export not supported for end2end models."
if edgetpu:
@ -417,6 +419,8 @@ class Exporter:
f[12], _ = self.export_ncnn()
if imx:
f[13], _ = self.export_imx()
if rknn:
f[14], _ = self.export_rknn()
# Finish
f = [str(x) for x in f if x] # filter out '' and None
@ -746,7 +750,7 @@ class Exporter:
model = IOSDetectModel(self.model, self.im) if self.args.nms else self.model
else:
if self.args.nms:
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolov8n.pt'.")
LOGGER.warning(f"{prefix} WARNING ⚠️ 'nms=True' is only available for Detect models like 'yolo11n.pt'.")
# TODO CoreML Segment and Pose model pipelining
model = self.model
@ -1141,6 +1145,35 @@ class Exporter:
return f, None
@try_export
def export_rknn(self, prefix=colorstr("RKNN:")):
"""YOLO RKNN model export."""
LOGGER.info(f"\n{prefix} starting export with rknn-toolkit2...")
check_requirements("rknn-toolkit2")
if IS_COLAB:
# Prevent 'exit' from closing the notebook https://github.com/airockchip/rknn-toolkit2/issues/259
import builtins
builtins.exit = lambda: None
from rknn.api import RKNN
f, _ = self.export_onnx()
platform = self.args.name
export_path = Path(f"{Path(f).stem}_rknn_model")
export_path.mkdir(exist_ok=True)
rknn = RKNN(verbose=False)
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform=platform)
_ = rknn.load_onnx(model=f)
_ = rknn.build(do_quantization=False) # TODO: Add quantization support
f = f.replace(".onnx", f"-{platform}.rknn")
_ = rknn.export_rknn(f"{export_path / f}")
yaml_save(export_path / "metadata.yaml", self.metadata)
return export_path, None
def export_imx(self, prefix=colorstr("IMX:")):
"""YOLO IMX export."""
gptq = False