ultralytics 8.0.163 add new gpu-latest runner to CI actions (#4565)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Maia Numerosky <17316848+maianumerosky@users.noreply.github.com>
This commit is contained in:
parent
431cef3955
commit
b4dca690d4
14 changed files with 153 additions and 17 deletions
73
tests/test_cuda.py
Normal file
73
tests/test_cuda.py
Normal file
|
|
@ -0,0 +1,73 @@
|
|||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
import subprocess
|
||||
from pathlib import Path
|
||||
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.utils import ASSETS, SETTINGS
|
||||
|
||||
CUDA_IS_AVAILABLE = torch.cuda.is_available()
|
||||
CUDA_DEVICE_COUNT = torch.cuda.device_count()
|
||||
|
||||
WEIGHTS_DIR = Path(SETTINGS['weights_dir'])
|
||||
MODEL = WEIGHTS_DIR / 'path with spaces' / 'yolov8n.pt' # test spaces in path
|
||||
DATA = 'coco8.yaml'
|
||||
|
||||
|
||||
def test_checks():
|
||||
from ultralytics.utils.checks import cuda_device_count, cuda_is_available
|
||||
|
||||
assert cuda_device_count() == CUDA_DEVICE_COUNT
|
||||
assert cuda_is_available() == CUDA_IS_AVAILABLE
|
||||
|
||||
|
||||
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
||||
def test_train():
|
||||
YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, batch=-1, device=0) # also test AutoBatch, requires imgsz>=64
|
||||
|
||||
|
||||
@pytest.mark.skipif(CUDA_DEVICE_COUNT < 2, reason=f'DDP is not available, {CUDA_DEVICE_COUNT} device(s) found')
|
||||
def test_train_ddp():
|
||||
YOLO(MODEL).train(data=DATA, imgsz=64, epochs=1, device=[0, 1]) # requires imgsz>=64
|
||||
|
||||
|
||||
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
||||
def test_utils_benchmarks():
|
||||
from ultralytics.utils.benchmarks import ProfileModels
|
||||
|
||||
YOLO(MODEL).export(format='engine', imgsz=32, dynamic=True, batch=1) # pre-export engine model, auto-device
|
||||
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
|
||||
|
||||
|
||||
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
||||
def test_predict_sam():
|
||||
from ultralytics import SAM
|
||||
|
||||
# Load a model
|
||||
model = SAM(WEIGHTS_DIR / 'sam_b.pt')
|
||||
|
||||
# Display model information (optional)
|
||||
model.info()
|
||||
|
||||
# Run inference
|
||||
model(ASSETS / 'bus.jpg', device=0)
|
||||
|
||||
# Run inference with bboxes prompt
|
||||
model(ASSETS / 'zidane.jpg', bboxes=[439, 437, 524, 709], device=0)
|
||||
|
||||
# Run inference with points prompt
|
||||
model(ASSETS / 'zidane.jpg', points=[900, 370], labels=[1], device=0)
|
||||
|
||||
|
||||
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason='CUDA is not available')
|
||||
def test_model_tune():
|
||||
subprocess.run('pip install ray[tune]'.split(), check=True)
|
||||
YOLO('yolov8n-cls.yaml').tune(data='imagenet10',
|
||||
grace_period=1,
|
||||
max_samples=1,
|
||||
imgsz=32,
|
||||
epochs=1,
|
||||
plots=False,
|
||||
device='cpu')
|
||||
Loading…
Add table
Add a link
Reference in a new issue