ultralytics 8.0.128 FastSAM autodownload and super() init (#3552)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
400f3f72a1
commit
ad99246ff1
7 changed files with 90 additions and 72 deletions
|
|
@ -44,17 +44,20 @@ To perform object detection on an image, use the `predict` method as shown below
|
|||
from ultralytics import FastSAM
|
||||
from ultralytics.yolo.fastsam import FastSAMPrompt
|
||||
|
||||
IMAGE_PATH = 'images/dog.jpg'
|
||||
# Define image path and inference device
|
||||
IMAGE_PATH = 'ultralytics/assets/bus.jpg'
|
||||
DEVICE = 'cpu'
|
||||
model = FastSAM('FastSAM.pt')
|
||||
results = model(
|
||||
IMAGE_PATH,
|
||||
device=DEVICE,
|
||||
retina_masks=True,
|
||||
imgsz=1024,
|
||||
conf=0.4,
|
||||
iou=0.9,
|
||||
)
|
||||
|
||||
# Create a FastSAM model
|
||||
model = FastSAM('FastSAM-s.pt') # or FastSAM-x.pt
|
||||
|
||||
# Run inference on an image
|
||||
everything_results = model(IMAGE_PATH,
|
||||
device=DEVICE,
|
||||
retina_masks=True,
|
||||
imgsz=1024,
|
||||
conf=0.4,
|
||||
iou=0.9)
|
||||
|
||||
prompt_process = FastSAMPrompt(IMAGE_PATH, everything_results, device=DEVICE)
|
||||
|
||||
|
|
@ -83,8 +86,11 @@ Validation of the model on a dataset can be done as follows:
|
|||
```python
|
||||
from ultralytics import FastSAM
|
||||
|
||||
model = FastSAM('FastSAM.pt')
|
||||
results = model.val(data='coco8-seg.yaml)
|
||||
# Create a FastSAM model
|
||||
model = FastSAM('FastSAM-s.pt') # or FastSAM-x.pt
|
||||
|
||||
# Validate the model
|
||||
results = model.val(data='coco8-seg.yaml')
|
||||
```
|
||||
|
||||
Please note that FastSAM only supports detection and segmentation of a single class of object. This means it will recognize and segment all objects as the same class. Therefore, when preparing the dataset, you need to convert all object category IDs to 0.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue