ultralytics 8.0.170 apply is_list fixes for torch.Tensor inputs (#4713)
Co-authored-by: Gezhi Zhang <765724965@qq.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
a1c1d6b483
commit
aa9133bb88
15 changed files with 74 additions and 36 deletions
|
|
@ -312,10 +312,13 @@ class Predictor(BasePredictor):
|
|||
pred_masks, pred_scores = preds[:2]
|
||||
pred_bboxes = preds[2] if self.segment_all else None
|
||||
names = dict(enumerate(str(i) for i in range(len(pred_masks))))
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
is_list = isinstance(orig_imgs, list) # input images are a list, not a torch.Tensor
|
||||
for i, masks in enumerate([pred_masks]):
|
||||
orig_img = orig_imgs[i] if is_list else orig_imgs
|
||||
orig_img = orig_imgs[i]
|
||||
if pred_bboxes is not None:
|
||||
pred_bboxes = ops.scale_boxes(img.shape[2:], pred_bboxes.float(), orig_img.shape, padding=False)
|
||||
cls = torch.arange(len(pred_masks), dtype=torch.int32, device=pred_masks.device)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue