Fix model re-fuse() in inference loops (#466)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
parent
cc3c774bde
commit
a86218b767
22 changed files with 135 additions and 66 deletions
|
|
@ -140,10 +140,13 @@ class ClassificationTrainer(BaseTrainer):
|
|||
def train(cfg):
|
||||
cfg.model = cfg.model or "yolov8n-cls.pt" # or "resnet18"
|
||||
cfg.data = cfg.data or "mnist160" # or yolo.ClassificationDataset("mnist")
|
||||
cfg.lr0 = 0.1
|
||||
cfg.weight_decay = 5e-5
|
||||
cfg.label_smoothing = 0.1
|
||||
cfg.warmup_epochs = 0.0
|
||||
|
||||
# Reproduce ImageNet results
|
||||
# cfg.lr0 = 0.1
|
||||
# cfg.weight_decay = 5e-5
|
||||
# cfg.label_smoothing = 0.1
|
||||
# cfg.warmup_epochs = 0.0
|
||||
|
||||
cfg.device = cfg.device if cfg.device is not None else ''
|
||||
# trainer = ClassificationTrainer(cfg)
|
||||
# trainer.train()
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue