ultralytics 8.0.46 TFLite and Benchmarks updates (#1141)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-02-25 09:24:14 -08:00 committed by GitHub
parent 3765f4f6d9
commit a82ee2c779
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
11 changed files with 130 additions and 74 deletions

View file

@ -37,11 +37,7 @@ from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.torch_utils import select_device
def run_benchmarks(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
imgsz=640,
half=False,
device='cpu',
hard_fail=False):
def benchmark(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt', imgsz=160, half=False, device='cpu', hard_fail=0.30):
device = select_device(device, verbose=False)
if isinstance(model, (str, Path)):
model = YOLO(model)
@ -52,6 +48,7 @@ def run_benchmarks(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
try:
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
assert i != 11 or model.task != 'classify', 'paddle-classify bug'
if 'cpu' in device.type:
assert cpu, 'inference not supported on CPU'
@ -85,26 +82,28 @@ def run_benchmarks(model=Path(SETTINGS['weights_dir']) / 'yolov8n.pt',
y.append([name, '', round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
except Exception as e:
if hard_fail:
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
assert type(e) is AssertionError, f'Benchmark hard_fail for {name}: {e}'
LOGGER.warning(f'ERROR ❌️ Benchmark failure for {name}: {e}')
y.append([name, '', None, None, None]) # mAP, t_inference
# Print results
LOGGER.info('\n')
check_yolo(device=device) # print system info
c = ['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)'] if map else ['Format', 'Export', '', '']
c = ['Format', 'Status❔', 'Size (MB)', key, 'Inference time (ms/im)']
df = pd.DataFrame(y, columns=c)
LOGGER.info(f'\nBenchmarks complete for {Path(model.ckpt_path).name} on {data} at imgsz={imgsz} '
f'({time.time() - t0:.2f}s)')
LOGGER.info(str(df if map else df.iloc[:, :2]))
if hard_fail and isinstance(hard_fail, str):
name = Path(model.ckpt_path).name
s = f'\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n'
LOGGER.info(s)
with open('benchmarks.log', 'a') as f:
f.write(s)
if hard_fail and isinstance(hard_fail, float):
metrics = df[key].array # values to compare to floor
floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: metric < floor {floor}'
floor = hard_fail # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: one or more metric(s) < floor {floor}'
return df
if __name__ == '__main__':
run_benchmarks()
benchmark()