ultralytics 8.1.24 new OpenVINO 2023.3 export updates (#8417)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Adrian Boguszewski 2024-03-05 15:49:02 +01:00 committed by GitHub
parent 16a91a9b6b
commit a7cfd83c5f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 35 additions and 30 deletions

View file

@ -87,7 +87,7 @@ from ultralytics.utils.checks import PYTHON_VERSION, check_imgsz, check_is_path_
from ultralytics.utils.downloads import attempt_download_asset, get_github_assets
from ultralytics.utils.files import file_size, spaces_in_path
from ultralytics.utils.ops import Profile
from ultralytics.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device, smart_inference_mode
def export_formats():
@ -283,7 +283,7 @@ class Exporter:
f[0], _ = self.export_torchscript()
if engine: # TensorRT required before ONNX
f[1], _ = self.export_engine()
if onnx or xml: # OpenVINO requires ONNX
if onnx: # ONNX
f[2], _ = self.export_onnx()
if xml: # OpenVINO
f[3], _ = self.export_openvino()
@ -411,16 +411,16 @@ class Exporter:
@try_export
def export_openvino(self, prefix=colorstr("OpenVINO:")):
"""YOLOv8 OpenVINO export."""
check_requirements("openvino-dev>=2023.0") # requires openvino-dev: https://pypi.org/project/openvino-dev/
import openvino.runtime as ov # noqa
from openvino.tools import mo # noqa
check_requirements("openvino>=2023.3") # requires openvino: https://pypi.org/project/openvino-dev/
import openvino as ov # noqa
LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}")
fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}")
f_onnx = self.file.with_suffix(".onnx")
f_ov = str(Path(f) / self.file.with_suffix(".xml").name)
fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name)
assert TORCH_1_13, f"OpenVINO export requires torch>=1.13.0 but torch=={torch.__version__} is installed"
ov_model = ov.convert_model(
self.model.cpu(),
input=None if self.args.dynamic else [self.im.shape],
example_input=self.im,
)
def serialize(ov_model, file):
"""Set RT info, serialize and save metadata YAML."""
@ -433,21 +433,19 @@ class Exporter:
if self.model.task != "classify":
ov_model.set_rt_info("fit_to_window_letterbox", ["model_info", "resize_type"])
ov.serialize(ov_model, file) # save
ov.save_model(ov_model, file, compress_to_fp16=self.args.half)
yaml_save(Path(file).parent / "metadata.yaml", self.metadata) # add metadata.yaml
ov_model = mo.convert_model(
f_onnx, model_name=self.pretty_name, framework="onnx", compress_to_fp16=self.args.half
) # export
if self.args.int8:
fq = str(self.file).replace(self.file.suffix, f"_int8_openvino_model{os.sep}")
fq_ov = str(Path(fq) / self.file.with_suffix(".xml").name)
if not self.args.data:
self.args.data = DEFAULT_CFG.data or "coco128.yaml"
LOGGER.warning(
f"{prefix} WARNING ⚠️ INT8 export requires a missing 'data' arg for calibration. "
f"Using default 'data={self.args.data}'."
)
check_requirements("nncf>=2.5.0")
check_requirements("nncf>=2.8.0")
import nncf
def transform_fn(data_item):
@ -466,6 +464,7 @@ class Exporter:
if n < 300:
LOGGER.warning(f"{prefix} WARNING ⚠️ >300 images recommended for INT8 calibration, found {n} images.")
quantization_dataset = nncf.Dataset(dataset, transform_fn)
ignored_scope = None
if isinstance(self.model.model[-1], Detect):
# Includes all Detect subclasses like Segment, Pose, OBB, WorldDetect
@ -473,20 +472,24 @@ class Exporter:
ignored_scope = nncf.IgnoredScope( # ignore operations
patterns=[
f"/{head_module_name}/Add",
f"/{head_module_name}/Sub",
f"/{head_module_name}/Mul",
f"/{head_module_name}/Div",
f"/{head_module_name}/dfl",
f".*{head_module_name}/.*/Add",
f".*{head_module_name}/.*/Sub*",
f".*{head_module_name}/.*/Mul*",
f".*{head_module_name}/.*/Div*",
f".*{head_module_name}\\.dfl.*",
],
names=[f"/{head_module_name}/Sigmoid"],
types=["Sigmoid"],
)
quantized_ov_model = nncf.quantize(
ov_model, quantization_dataset, preset=nncf.QuantizationPreset.MIXED, ignored_scope=ignored_scope
)
serialize(quantized_ov_model, fq_ov)
return fq, None
f = str(self.file).replace(self.file.suffix, f"_openvino_model{os.sep}")
f_ov = str(Path(f) / self.file.with_suffix(".xml").name)
serialize(ov_model, f_ov)
return f, None