ultralytics 8.0.47 Docker and reformat updates (#1153)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
d4be4cb24b
commit
a58f766f94
41 changed files with 224 additions and 201 deletions
|
|
@ -564,7 +564,7 @@ class Albumentations:
|
|||
A.CLAHE(p=0.01),
|
||||
A.RandomBrightnessContrast(p=0.0),
|
||||
A.RandomGamma(p=0.0),
|
||||
A.ImageCompression(quality_lower=75, p=0.0),] # transforms
|
||||
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
||||
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
||||
|
||||
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
||||
|
|
@ -671,14 +671,14 @@ def v8_transforms(dataset, imgsz, hyp):
|
|||
shear=hyp.shear,
|
||||
perspective=hyp.perspective,
|
||||
pre_transform=LetterBox(new_shape=(imgsz, imgsz)),
|
||||
),])
|
||||
)])
|
||||
return Compose([
|
||||
pre_transform,
|
||||
MixUp(dataset, pre_transform=pre_transform, p=hyp.mixup),
|
||||
Albumentations(p=1.0),
|
||||
RandomHSV(hgain=hyp.hsv_h, sgain=hyp.hsv_s, vgain=hyp.hsv_v),
|
||||
RandomFlip(direction='vertical', p=hyp.flipud),
|
||||
RandomFlip(direction='horizontal', p=hyp.fliplr),]) # transforms
|
||||
RandomFlip(direction='horizontal', p=hyp.fliplr)]) # transforms
|
||||
|
||||
|
||||
# Classification augmentations -----------------------------------------------------------------------------------------
|
||||
|
|
@ -719,8 +719,8 @@ def classify_albumentations(
|
|||
if vflip > 0:
|
||||
T += [A.VerticalFlip(p=vflip)]
|
||||
if jitter > 0:
|
||||
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, saturation, 0 hue
|
||||
T += [A.ColorJitter(*color_jitter, 0)]
|
||||
jitter = float(jitter)
|
||||
T += [A.ColorJitter(jitter, jitter, jitter, 0)] # brightness, contrast, saturation, 0 hue
|
||||
else: # Use fixed crop for eval set (reproducibility)
|
||||
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
||||
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue