ultralytics 8.0.81 single-line docstring updates (#2061)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
5bce1c3021
commit
a38f227672
64 changed files with 620 additions and 58 deletions
|
|
@ -19,6 +19,7 @@ from ultralytics.yolo.utils.torch_utils import de_parallel
|
|||
class DetectionValidator(BaseValidator):
|
||||
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||
"""Initialize detection model with necessary variables and settings."""
|
||||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.args.task = 'detect'
|
||||
self.is_coco = False
|
||||
|
|
@ -28,6 +29,7 @@ class DetectionValidator(BaseValidator):
|
|||
self.niou = self.iouv.numel()
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses batch of images for YOLO training."""
|
||||
batch['img'] = batch['img'].to(self.device, non_blocking=True)
|
||||
batch['img'] = (batch['img'].half() if self.args.half else batch['img'].float()) / 255
|
||||
for k in ['batch_idx', 'cls', 'bboxes']:
|
||||
|
|
@ -40,6 +42,7 @@ class DetectionValidator(BaseValidator):
|
|||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initialize evaluation metrics for YOLO."""
|
||||
val = self.data.get(self.args.split, '') # validation path
|
||||
self.is_coco = isinstance(val, str) and 'coco' in val and val.endswith(f'{os.sep}val2017.txt') # is COCO
|
||||
self.class_map = ops.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
||||
|
|
@ -54,9 +57,11 @@ class DetectionValidator(BaseValidator):
|
|||
self.stats = []
|
||||
|
||||
def get_desc(self):
|
||||
"""Return a formatted string summarizing class metrics of YOLO model."""
|
||||
return ('%22s' + '%11s' * 6) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)')
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply Non-maximum suppression to prediction outputs."""
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
|
|
@ -113,10 +118,12 @@ class DetectionValidator(BaseValidator):
|
|||
self.save_one_txt(predn, self.args.save_conf, shape, file)
|
||||
|
||||
def finalize_metrics(self, *args, **kwargs):
|
||||
"""Set final values for metrics speed and confusion matrix."""
|
||||
self.metrics.speed = self.speed
|
||||
self.metrics.confusion_matrix = self.confusion_matrix
|
||||
|
||||
def get_stats(self):
|
||||
"""Returns metrics statistics and results dictionary."""
|
||||
stats = [torch.cat(x, 0).cpu().numpy() for x in zip(*self.stats)] # to numpy
|
||||
if len(stats) and stats[0].any():
|
||||
self.metrics.process(*stats)
|
||||
|
|
@ -124,6 +131,7 @@ class DetectionValidator(BaseValidator):
|
|||
return self.metrics.results_dict
|
||||
|
||||
def print_results(self):
|
||||
"""Prints training/validation set metrics per class."""
|
||||
pf = '%22s' + '%11i' * 2 + '%11.3g' * len(self.metrics.keys) # print format
|
||||
LOGGER.info(pf % ('all', self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||||
if self.nt_per_class.sum() == 0:
|
||||
|
|
@ -183,6 +191,7 @@ class DetectionValidator(BaseValidator):
|
|||
mode='val')[0]
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plot validation image samples."""
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
|
|
@ -192,6 +201,7 @@ class DetectionValidator(BaseValidator):
|
|||
names=self.names)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots predicted bounding boxes on input images and saves the result."""
|
||||
plot_images(batch['img'],
|
||||
*output_to_target(preds, max_det=15),
|
||||
paths=batch['im_file'],
|
||||
|
|
@ -199,6 +209,7 @@ class DetectionValidator(BaseValidator):
|
|||
names=self.names) # pred
|
||||
|
||||
def save_one_txt(self, predn, save_conf, shape, file):
|
||||
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
|
||||
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||
for *xyxy, conf, cls in predn.tolist():
|
||||
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||
|
|
@ -207,6 +218,7 @@ class DetectionValidator(BaseValidator):
|
|||
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
||||
|
||||
def pred_to_json(self, predn, filename):
|
||||
"""Serialize YOLO predictions to COCO json format."""
|
||||
stem = Path(filename).stem
|
||||
image_id = int(stem) if stem.isnumeric() else stem
|
||||
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||
|
|
@ -219,6 +231,7 @@ class DetectionValidator(BaseValidator):
|
|||
'score': round(p[4], 5)})
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Evaluates YOLO output in JSON format and returns performance statistics."""
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
|
|
@ -245,6 +258,7 @@ class DetectionValidator(BaseValidator):
|
|||
|
||||
|
||||
def val(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Validate trained YOLO model on validation dataset."""
|
||||
model = cfg.model or 'yolov8n.pt'
|
||||
data = cfg.data or 'coco128.yaml'
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue