ultralytics 8.0.81 single-line docstring updates (#2061)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
5bce1c3021
commit
a38f227672
64 changed files with 620 additions and 58 deletions
|
|
@ -127,6 +127,7 @@ class YOLODataset(BaseDataset):
|
|||
return x
|
||||
|
||||
def get_labels(self):
|
||||
"""Returns dictionary of labels for YOLO training."""
|
||||
self.label_files = img2label_paths(self.im_files)
|
||||
cache_path = Path(self.label_files[0]).parent.with_suffix('.cache')
|
||||
try:
|
||||
|
|
@ -170,6 +171,7 @@ class YOLODataset(BaseDataset):
|
|||
|
||||
# TODO: use hyp config to set all these augmentations
|
||||
def build_transforms(self, hyp=None):
|
||||
"""Builds and appends transforms to the list."""
|
||||
if self.augment:
|
||||
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
|
||||
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
|
||||
|
|
@ -187,6 +189,7 @@ class YOLODataset(BaseDataset):
|
|||
return transforms
|
||||
|
||||
def close_mosaic(self, hyp):
|
||||
"""Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations."""
|
||||
hyp.mosaic = 0.0 # set mosaic ratio=0.0
|
||||
hyp.copy_paste = 0.0 # keep the same behavior as previous v8 close-mosaic
|
||||
hyp.mixup = 0.0 # keep the same behavior as previous v8 close-mosaic
|
||||
|
|
@ -206,6 +209,7 @@ class YOLODataset(BaseDataset):
|
|||
|
||||
@staticmethod
|
||||
def collate_fn(batch):
|
||||
"""Collates data samples into batches."""
|
||||
new_batch = {}
|
||||
keys = batch[0].keys()
|
||||
values = list(zip(*[list(b.values()) for b in batch]))
|
||||
|
|
@ -234,6 +238,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
|
|||
"""
|
||||
|
||||
def __init__(self, root, augment, imgsz, cache=False):
|
||||
"""Initialize YOLO object with root, image size, augmentations, and cache settings"""
|
||||
super().__init__(root=root)
|
||||
self.torch_transforms = classify_transforms(imgsz)
|
||||
self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
|
||||
|
|
@ -242,6 +247,7 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
|
|||
self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im
|
||||
|
||||
def __getitem__(self, i):
|
||||
"""Returns subset of data and targets corresponding to given indices."""
|
||||
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image
|
||||
if self.cache_ram and im is None:
|
||||
im = self.samples[i][3] = cv2.imread(f)
|
||||
|
|
@ -265,4 +271,5 @@ class ClassificationDataset(torchvision.datasets.ImageFolder):
|
|||
class SemanticDataset(BaseDataset):
|
||||
|
||||
def __init__(self):
|
||||
"""Initialize a SemanticDataset object."""
|
||||
pass
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue