ultralytics 8.0.81 single-line docstring updates (#2061)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-04-17 00:45:36 +02:00 committed by GitHub
parent 5bce1c3021
commit a38f227672
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
64 changed files with 620 additions and 58 deletions

View file

@ -32,6 +32,7 @@ class SourceTypes:
class LoadStreams:
# YOLOv8 streamloader, i.e. `yolo predict source='rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
def __init__(self, sources='file.streams', imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
"""Initialize instance variables and check for consistent input stream shapes."""
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
self.mode = 'stream'
self.imgsz = imgsz
@ -97,10 +98,12 @@ class LoadStreams:
time.sleep(0.0) # wait time
def __iter__(self):
"""Iterates through YOLO image feed and re-opens unresponsive streams."""
self.count = -1
return self
def __next__(self):
"""Returns source paths, transformed and original images for processing YOLOv5."""
self.count += 1
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
cv2.destroyAllWindows()
@ -117,6 +120,7 @@ class LoadStreams:
return self.sources, im, im0, None, ''
def __len__(self):
"""Return the length of the sources object."""
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
@ -153,6 +157,7 @@ class LoadScreenshots:
self.monitor = {'left': self.left, 'top': self.top, 'width': self.width, 'height': self.height}
def __iter__(self):
"""Returns an iterator of the object."""
return self
def __next__(self):
@ -173,6 +178,7 @@ class LoadScreenshots:
class LoadImages:
# YOLOv8 image/video dataloader, i.e. `yolo predict source=image.jpg/vid.mp4`
def __init__(self, path, imgsz=640, stride=32, auto=True, transforms=None, vid_stride=1):
"""Initialize the Dataloader and raise FileNotFoundError if file not found."""
if isinstance(path, str) and Path(path).suffix == '.txt': # *.txt file with img/vid/dir on each line
path = Path(path).read_text().rsplit()
files = []
@ -211,10 +217,12 @@ class LoadImages:
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}')
def __iter__(self):
"""Returns an iterator object for VideoStream or ImageFolder."""
self.count = 0
return self
def __next__(self):
"""Return next image, path and metadata from dataset."""
if self.count == self.nf:
raise StopIteration
path = self.files[self.count]
@ -276,12 +284,14 @@ class LoadImages:
return im
def __len__(self):
"""Returns the number of files in the object."""
return self.nf # number of files
class LoadPilAndNumpy:
def __init__(self, im0, imgsz=640, stride=32, auto=True, transforms=None):
"""Initialize PIL and Numpy Dataloader."""
if not isinstance(im0, list):
im0 = [im0]
self.paths = [getattr(im, 'filename', f'image{i}.jpg') for i, im in enumerate(im0)]
@ -296,6 +306,7 @@ class LoadPilAndNumpy:
@staticmethod
def _single_check(im):
"""Validate and format an image to numpy array."""
assert isinstance(im, (Image.Image, np.ndarray)), f'Expected PIL/np.ndarray image type, but got {type(im)}'
if isinstance(im, Image.Image):
if im.mode != 'RGB':
@ -305,6 +316,7 @@ class LoadPilAndNumpy:
return im
def _single_preprocess(self, im, auto):
"""Preprocesses a single image for inference."""
if self.transforms:
im = self.transforms(im) # transforms
else:
@ -314,9 +326,11 @@ class LoadPilAndNumpy:
return im
def __len__(self):
"""Returns the length of the 'im0' attribute."""
return len(self.im0)
def __next__(self):
"""Returns batch paths, images, processed images, None, ''."""
if self.count == 1: # loop only once as it's batch inference
raise StopIteration
auto = all(x.shape == self.im0[0].shape for x in self.im0) and self.auto
@ -326,6 +340,7 @@ class LoadPilAndNumpy:
return self.paths, im, self.im0, None, ''
def __iter__(self):
"""Enables iteration for class LoadPilAndNumpy."""
self.count = 0
return self
@ -338,16 +353,19 @@ class LoadTensor:
self.mode = 'image'
def __iter__(self):
"""Returns an iterator object."""
self.count = 0
return self
def __next__(self):
"""Return next item in the iterator."""
if self.count == 1:
raise StopIteration
self.count += 1
return None, self.im0, self.im0, None, '' # self.paths, im, self.im0, None, ''
def __len__(self):
"""Returns the batch size."""
return self.bs