ultralytics 8.1.43 40% faster ultralytics imports (#9547)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
99c61d6f7b
commit
a2628657a1
21 changed files with 240 additions and 225 deletions
|
|
@ -10,7 +10,6 @@ import pytest
|
|||
import torch
|
||||
import yaml
|
||||
from PIL import Image
|
||||
from torchvision.transforms import ToTensor
|
||||
|
||||
from ultralytics import RTDETR, YOLO
|
||||
from ultralytics.cfg import TASK2DATA
|
||||
|
|
@ -108,20 +107,17 @@ def test_predict_img():
|
|||
assert len(model(batch, imgsz=32)) == len(batch) # multiple sources in a batch
|
||||
|
||||
# Test tensor inference
|
||||
im = cv2.imread(str(SOURCE)) # OpenCV
|
||||
t = cv2.resize(im, (32, 32))
|
||||
t = ToTensor()(t)
|
||||
t = torch.stack([t, t, t, t])
|
||||
results = model(t, imgsz=32)
|
||||
assert len(results) == t.shape[0]
|
||||
results = seg_model(t, imgsz=32)
|
||||
assert len(results) == t.shape[0]
|
||||
results = cls_model(t, imgsz=32)
|
||||
assert len(results) == t.shape[0]
|
||||
results = pose_model(t, imgsz=32)
|
||||
assert len(results) == t.shape[0]
|
||||
results = obb_model(t, imgsz=32)
|
||||
assert len(results) == t.shape[0]
|
||||
im = torch.rand((4, 3, 32, 32)) # batch-size 4, FP32 0.0-1.0 RGB order
|
||||
results = model(im, imgsz=32)
|
||||
assert len(results) == im.shape[0]
|
||||
results = seg_model(im, imgsz=32)
|
||||
assert len(results) == im.shape[0]
|
||||
results = cls_model(im, imgsz=32)
|
||||
assert len(results) == im.shape[0]
|
||||
results = pose_model(im, imgsz=32)
|
||||
assert len(results) == im.shape[0]
|
||||
results = obb_model(im, imgsz=32)
|
||||
assert len(results) == im.shape[0]
|
||||
|
||||
|
||||
def test_predict_grey_and_4ch():
|
||||
|
|
@ -592,8 +588,6 @@ def image():
|
|||
)
|
||||
def test_classify_transforms_train(image, auto_augment, erasing, force_color_jitter):
|
||||
"""Tests classification transforms during training with various augmentation settings."""
|
||||
import torchvision.transforms as T
|
||||
|
||||
from ultralytics.data.augment import classify_augmentations
|
||||
|
||||
transform = classify_augmentations(
|
||||
|
|
@ -610,7 +604,6 @@ def test_classify_transforms_train(image, auto_augment, erasing, force_color_jit
|
|||
hsv_v=0.4,
|
||||
force_color_jitter=force_color_jitter,
|
||||
erasing=erasing,
|
||||
interpolation=T.InterpolationMode.BILINEAR,
|
||||
)
|
||||
|
||||
transformed_image = transform(Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)))
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue