Add RTDETR Trainer (#2745)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> Co-authored-by: Laughing-q <1185102784@qq.com> Co-authored-by: Kayzwer <68285002+Kayzwer@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
This commit is contained in:
parent
03bce07848
commit
a0ba8ef5f0
23 changed files with 989 additions and 314 deletions
|
|
@ -229,23 +229,23 @@ class MSDeformAttn(nn.Module):
|
|||
xavier_uniform_(self.output_proj.weight.data)
|
||||
constant_(self.output_proj.bias.data, 0.)
|
||||
|
||||
def forward(self, query, reference_points, value, value_spatial_shapes, value_mask=None):
|
||||
def forward(self, query, refer_bbox, value, value_shapes, value_mask=None):
|
||||
"""
|
||||
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/transformers/deformable_transformer.py
|
||||
Args:
|
||||
query (Tensor): [bs, query_length, C]
|
||||
reference_points (Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
||||
query (torch.Tensor): [bs, query_length, C]
|
||||
refer_bbox (torch.Tensor): [bs, query_length, n_levels, 2], range in [0, 1], top-left (0,0),
|
||||
bottom-right (1, 1), including padding area
|
||||
value (Tensor): [bs, value_length, C]
|
||||
value_spatial_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
||||
value (torch.Tensor): [bs, value_length, C]
|
||||
value_shapes (List): [n_levels, 2], [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
|
||||
value_mask (Tensor): [bs, value_length], True for non-padding elements, False for padding elements
|
||||
|
||||
Returns:
|
||||
output (Tensor): [bs, Length_{query}, C]
|
||||
"""
|
||||
bs, len_q = query.shape[:2]
|
||||
_, len_v = value.shape[:2]
|
||||
assert sum(s[0] * s[1] for s in value_spatial_shapes) == len_v
|
||||
len_v = value.shape[1]
|
||||
assert sum(s[0] * s[1] for s in value_shapes) == len_v
|
||||
|
||||
value = self.value_proj(value)
|
||||
if value_mask is not None:
|
||||
|
|
@ -255,18 +255,17 @@ class MSDeformAttn(nn.Module):
|
|||
attention_weights = self.attention_weights(query).view(bs, len_q, self.n_heads, self.n_levels * self.n_points)
|
||||
attention_weights = F.softmax(attention_weights, -1).view(bs, len_q, self.n_heads, self.n_levels, self.n_points)
|
||||
# N, Len_q, n_heads, n_levels, n_points, 2
|
||||
n = reference_points.shape[-1]
|
||||
if n == 2:
|
||||
offset_normalizer = torch.as_tensor(value_spatial_shapes, dtype=query.dtype, device=query.device).flip(-1)
|
||||
num_points = refer_bbox.shape[-1]
|
||||
if num_points == 2:
|
||||
offset_normalizer = torch.as_tensor(value_shapes, dtype=query.dtype, device=query.device).flip(-1)
|
||||
add = sampling_offsets / offset_normalizer[None, None, None, :, None, :]
|
||||
sampling_locations = reference_points[:, :, None, :, None, :] + add
|
||||
|
||||
elif n == 4:
|
||||
add = sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
|
||||
sampling_locations = reference_points[:, :, None, :, None, :2] + add
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :] + add
|
||||
elif num_points == 4:
|
||||
add = sampling_offsets / self.n_points * refer_bbox[:, :, None, :, None, 2:] * 0.5
|
||||
sampling_locations = refer_bbox[:, :, None, :, None, :2] + add
|
||||
else:
|
||||
raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {n}.')
|
||||
output = multi_scale_deformable_attn_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights)
|
||||
raise ValueError(f'Last dim of reference_points must be 2 or 4, but got {num_points}.')
|
||||
output = multi_scale_deformable_attn_pytorch(value, value_shapes, sampling_locations, attention_weights)
|
||||
output = self.output_proj(output)
|
||||
return output
|
||||
|
||||
|
|
@ -308,33 +307,24 @@ class DeformableTransformerDecoderLayer(nn.Module):
|
|||
tgt = self.norm3(tgt)
|
||||
return tgt
|
||||
|
||||
def forward(self,
|
||||
tgt,
|
||||
reference_points,
|
||||
src,
|
||||
src_spatial_shapes,
|
||||
src_padding_mask=None,
|
||||
attn_mask=None,
|
||||
query_pos=None):
|
||||
def forward(self, embed, refer_bbox, feats, shapes, padding_mask=None, attn_mask=None, query_pos=None):
|
||||
# self attention
|
||||
q = k = self.with_pos_embed(tgt, query_pos)
|
||||
if attn_mask is not None:
|
||||
attn_mask = torch.where(attn_mask.astype('bool'), torch.zeros(attn_mask.shape, tgt.dtype),
|
||||
torch.full(attn_mask.shape, float('-inf'), tgt.dtype))
|
||||
tgt2 = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), tgt.transpose(0, 1))[0].transpose(0, 1)
|
||||
tgt = tgt + self.dropout1(tgt2)
|
||||
tgt = self.norm1(tgt)
|
||||
q = k = self.with_pos_embed(embed, query_pos)
|
||||
tgt = self.self_attn(q.transpose(0, 1), k.transpose(0, 1), embed.transpose(0, 1),
|
||||
attn_mask=attn_mask)[0].transpose(0, 1)
|
||||
embed = embed + self.dropout1(tgt)
|
||||
embed = self.norm1(embed)
|
||||
|
||||
# cross attention
|
||||
tgt2 = self.cross_attn(self.with_pos_embed(tgt, query_pos), reference_points, src, src_spatial_shapes,
|
||||
src_padding_mask)
|
||||
tgt = tgt + self.dropout2(tgt2)
|
||||
tgt = self.norm2(tgt)
|
||||
tgt = self.cross_attn(self.with_pos_embed(embed, query_pos), refer_bbox.unsqueeze(2), feats, shapes,
|
||||
padding_mask)
|
||||
embed = embed + self.dropout2(tgt)
|
||||
embed = self.norm2(embed)
|
||||
|
||||
# ffn
|
||||
tgt = self.forward_ffn(tgt)
|
||||
embed = self.forward_ffn(embed)
|
||||
|
||||
return tgt
|
||||
return embed
|
||||
|
||||
|
||||
class DeformableTransformerDecoder(nn.Module):
|
||||
|
|
@ -349,41 +339,40 @@ class DeformableTransformerDecoder(nn.Module):
|
|||
self.hidden_dim = hidden_dim
|
||||
self.eval_idx = eval_idx if eval_idx >= 0 else num_layers + eval_idx
|
||||
|
||||
def forward(self,
|
||||
tgt,
|
||||
reference_points,
|
||||
src,
|
||||
src_spatial_shapes,
|
||||
bbox_head,
|
||||
score_head,
|
||||
query_pos_head,
|
||||
attn_mask=None,
|
||||
src_padding_mask=None):
|
||||
output = tgt
|
||||
dec_out_bboxes = []
|
||||
dec_out_logits = []
|
||||
ref_points = None
|
||||
ref_points_detach = torch.sigmoid(reference_points)
|
||||
def forward(
|
||||
self,
|
||||
embed, # decoder embeddings
|
||||
refer_bbox, # anchor
|
||||
feats, # image features
|
||||
shapes, # feature shapes
|
||||
bbox_head,
|
||||
score_head,
|
||||
pos_mlp,
|
||||
attn_mask=None,
|
||||
padding_mask=None):
|
||||
output = embed
|
||||
dec_bboxes = []
|
||||
dec_cls = []
|
||||
last_refined_bbox = None
|
||||
refer_bbox = refer_bbox.sigmoid()
|
||||
for i, layer in enumerate(self.layers):
|
||||
ref_points_input = ref_points_detach.unsqueeze(2)
|
||||
query_pos_embed = query_pos_head(ref_points_detach)
|
||||
output = layer(output, ref_points_input, src, src_spatial_shapes, src_padding_mask, attn_mask,
|
||||
query_pos_embed)
|
||||
output = layer(output, refer_bbox, feats, shapes, padding_mask, attn_mask, pos_mlp(refer_bbox))
|
||||
|
||||
inter_ref_bbox = torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points_detach))
|
||||
# refine bboxes, (bs, num_queries+num_denoising, 4)
|
||||
refined_bbox = torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(refer_bbox))
|
||||
|
||||
if self.training:
|
||||
dec_out_logits.append(score_head[i](output))
|
||||
dec_cls.append(score_head[i](output))
|
||||
if i == 0:
|
||||
dec_out_bboxes.append(inter_ref_bbox)
|
||||
dec_bboxes.append(refined_bbox)
|
||||
else:
|
||||
dec_out_bboxes.append(torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(ref_points)))
|
||||
dec_bboxes.append(torch.sigmoid(bbox_head[i](output) + inverse_sigmoid(last_refined_bbox)))
|
||||
elif i == self.eval_idx:
|
||||
dec_out_logits.append(score_head[i](output))
|
||||
dec_out_bboxes.append(inter_ref_bbox)
|
||||
dec_cls.append(score_head[i](output))
|
||||
dec_bboxes.append(refined_bbox)
|
||||
break
|
||||
|
||||
ref_points = inter_ref_bbox
|
||||
ref_points_detach = inter_ref_bbox.detach() if self.training else inter_ref_bbox
|
||||
last_refined_bbox = refined_bbox
|
||||
refer_bbox = refined_bbox.detach() if self.training else refined_bbox
|
||||
|
||||
return torch.stack(dec_out_bboxes), torch.stack(dec_out_logits)
|
||||
return torch.stack(dec_bboxes), torch.stack(dec_cls)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue