Use pathlib in DOTA ops (#7552)
Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
f6309b8e70
commit
9d4ffa43bc
6 changed files with 19 additions and 55 deletions
|
|
@ -105,12 +105,7 @@ def _fetch_trainer_metadata(trainer):
|
|||
save_interval = curr_epoch % save_period == 0
|
||||
save_assets = save and save_period > 0 and save_interval and not final_epoch
|
||||
|
||||
return dict(
|
||||
curr_epoch=curr_epoch,
|
||||
curr_step=curr_step,
|
||||
save_assets=save_assets,
|
||||
final_epoch=final_epoch,
|
||||
)
|
||||
return dict(curr_epoch=curr_epoch, curr_step=curr_step, save_assets=save_assets, final_epoch=final_epoch)
|
||||
|
||||
|
||||
def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, original_image_shape, ratio_pad):
|
||||
|
|
@ -218,11 +213,7 @@ def _log_confusion_matrix(experiment, trainer, curr_step, curr_epoch):
|
|||
conf_mat = trainer.validator.confusion_matrix.matrix
|
||||
names = list(trainer.data["names"].values()) + ["background"]
|
||||
experiment.log_confusion_matrix(
|
||||
matrix=conf_mat,
|
||||
labels=names,
|
||||
max_categories=len(names),
|
||||
epoch=curr_epoch,
|
||||
step=curr_step,
|
||||
matrix=conf_mat, labels=names, max_categories=len(names), epoch=curr_epoch, step=curr_step
|
||||
)
|
||||
|
||||
|
||||
|
|
@ -294,12 +285,7 @@ def _log_plots(experiment, trainer):
|
|||
def _log_model(experiment, trainer):
|
||||
"""Log the best-trained model to Comet.ml."""
|
||||
model_name = _get_comet_model_name()
|
||||
experiment.log_model(
|
||||
model_name,
|
||||
file_or_folder=str(trainer.best),
|
||||
file_name="best.pt",
|
||||
overwrite=True,
|
||||
)
|
||||
experiment.log_model(model_name, file_or_folder=str(trainer.best), file_name="best.pt", overwrite=True)
|
||||
|
||||
|
||||
def on_pretrain_routine_start(trainer):
|
||||
|
|
@ -320,11 +306,7 @@ def on_train_epoch_end(trainer):
|
|||
curr_epoch = metadata["curr_epoch"]
|
||||
curr_step = metadata["curr_step"]
|
||||
|
||||
experiment.log_metrics(
|
||||
trainer.label_loss_items(trainer.tloss, prefix="train"),
|
||||
step=curr_step,
|
||||
epoch=curr_epoch,
|
||||
)
|
||||
experiment.log_metrics(trainer.label_loss_items(trainer.tloss, prefix="train"), step=curr_step, epoch=curr_epoch)
|
||||
|
||||
if curr_epoch == 1:
|
||||
_log_images(experiment, trainer.save_dir.glob("train_batch*.jpg"), curr_step)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue