New ASSETS and trackers GMC cleanup (#4425)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
aaba14e6b2
commit
9d27e7ada4
32 changed files with 222 additions and 201 deletions
|
|
@ -5,7 +5,7 @@ from pathlib import Path
|
|||
|
||||
import pytest
|
||||
|
||||
from ultralytics.utils import ROOT, SETTINGS
|
||||
from ultralytics.utils import ASSETS, SETTINGS
|
||||
|
||||
WEIGHTS_DIR = Path(SETTINGS['weights_dir'])
|
||||
TASK_ARGS = [
|
||||
|
|
@ -40,12 +40,12 @@ def test_train(task, model, data):
|
|||
|
||||
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
||||
def test_val(task, model, data):
|
||||
run(f'yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32')
|
||||
run(f'yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json')
|
||||
|
||||
|
||||
@pytest.mark.parametrize('task,model,data', TASK_ARGS)
|
||||
def test_predict(task, model, data):
|
||||
run(f"yolo predict model={WEIGHTS_DIR / model}.pt source={ROOT / 'assets'} imgsz=32 save save_crop save_txt")
|
||||
run(f'yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt')
|
||||
|
||||
|
||||
@pytest.mark.parametrize('model,format', EXPORT_ARGS)
|
||||
|
|
@ -56,11 +56,11 @@ def test_export(model, format):
|
|||
def test_rtdetr(task='detect', model='yolov8n-rtdetr.yaml', data='coco8.yaml'):
|
||||
# Warning: MUST use imgsz=640
|
||||
run(f'yolo train {task} model={model} data={data} imgsz=640 epochs=1 cache=disk')
|
||||
run(f"yolo predict {task} model={model} source={ROOT / 'assets/bus.jpg'} imgsz=640 save save_crop save_txt")
|
||||
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=640 save save_crop save_txt")
|
||||
|
||||
|
||||
def test_fastsam(task='segment', model=WEIGHTS_DIR / 'FastSAM-s.pt', data='coco8-seg.yaml'):
|
||||
source = ROOT / 'assets/bus.jpg'
|
||||
source = ASSETS / 'bus.jpg'
|
||||
|
||||
run(f'yolo segment val {task} model={model} data={data} imgsz=32')
|
||||
run(f'yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt')
|
||||
|
|
@ -98,7 +98,7 @@ def test_mobilesam():
|
|||
model = SAM(WEIGHTS_DIR / 'mobile_sam.pt')
|
||||
|
||||
# Source
|
||||
source = ROOT / 'assets/zidane.jpg'
|
||||
source = ASSETS / 'zidane.jpg'
|
||||
|
||||
# Predict a segment based on a point prompt
|
||||
model.predict(source, points=[900, 370], labels=[1])
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue