ultralytics 8.3.25 Alibaba MNN export and predict support (#16802)

Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: Francesco Mattioli <Francesco.mttl@gmail.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Laughing-q <1185102784@qq.com>
Co-authored-by: Ultralytics Assistant <135830346+UltralyticsAssistant@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
王召德 2024-10-30 20:59:48 +08:00 committed by GitHub
parent 11b4194344
commit 9c72d94ba4
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
14 changed files with 465 additions and 39 deletions

View file

@ -1,6 +1,6 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
__version__ = "8.3.24"
__version__ = "8.3.25"
import os

View file

@ -16,6 +16,7 @@ TensorFlow Lite | `tflite` | yolo11n.tflite
TensorFlow Edge TPU | `edgetpu` | yolo11n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolo11n_web_model/
PaddlePaddle | `paddle` | yolo11n_paddle_model/
MNN | `mnn` | yolo11n.mnn
NCNN | `ncnn` | yolo11n_ncnn_model/
Requirements:
@ -41,6 +42,7 @@ Inference:
yolo11n.tflite # TensorFlow Lite
yolo11n_edgetpu.tflite # TensorFlow Edge TPU
yolo11n_paddle_model # PaddlePaddle
yolo11n.mnn # MNN
yolo11n_ncnn_model # NCNN
TensorFlow.js:
@ -109,6 +111,7 @@ def export_formats():
["TensorFlow Edge TPU", "edgetpu", "_edgetpu.tflite", True, False],
["TensorFlow.js", "tfjs", "_web_model", True, False],
["PaddlePaddle", "paddle", "_paddle_model", True, True],
["MNN", "mnn", ".mnn", True, True],
["NCNN", "ncnn", "_ncnn_model", True, True],
]
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU"], zip(*x)))
@ -190,7 +193,9 @@ class Exporter:
flags = [x == fmt for x in fmts]
if sum(flags) != 1:
raise ValueError(f"Invalid export format='{fmt}'. Valid formats are {fmts}")
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, ncnn = flags # export booleans
jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, mnn, ncnn = (
flags # export booleans
)
is_tf_format = any((saved_model, pb, tflite, edgetpu, tfjs))
# Device
@ -333,8 +338,10 @@ class Exporter:
f[9], _ = self.export_tfjs()
if paddle: # PaddlePaddle
f[10], _ = self.export_paddle()
if mnn: # MNN
f[11], _ = self.export_mnn()
if ncnn: # NCNN
f[11], _ = self.export_ncnn()
f[12], _ = self.export_ncnn()
# Finish
f = [str(x) for x in f if x] # filter out '' and None
@ -541,6 +548,32 @@ class Exporter:
yaml_save(Path(f) / "metadata.yaml", self.metadata) # add metadata.yaml
return f, None
@try_export
def export_mnn(self, prefix=colorstr("MNN:")):
"""YOLOv8 MNN export using MNN https://github.com/alibaba/MNN."""
f_onnx, _ = self.export_onnx() # get onnx model first
check_requirements("MNN>=2.9.6")
import MNN # noqa
from MNN.tools import mnnconvert
# Setup and checks
LOGGER.info(f"\n{prefix} starting export with MNN {MNN.version()}...")
assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
f = str(self.file.with_suffix(".mnn")) # MNN model file
args = ["", "-f", "ONNX", "--modelFile", f_onnx, "--MNNModel", f, "--bizCode", json.dumps(self.metadata)]
if self.args.int8:
args.append("--weightQuantBits")
args.append("8")
if self.args.half:
args.append("--fp16")
mnnconvert.convert(args)
# remove scratch file for model convert optimize
convert_scratch = Path(self.file.parent / ".__convert_external_data.bin")
if convert_scratch.exists():
convert_scratch.unlink()
return f, None
@try_export
def export_ncnn(self, prefix=colorstr("NCNN:")):
"""YOLO NCNN export using PNNX https://github.com/pnnx/pnnx."""

View file

@ -26,6 +26,7 @@ Usage - formats:
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
yolov8n.mnn # MNN
yolov8n_ncnn_model # NCNN
"""

View file

@ -17,6 +17,7 @@ Usage - formats:
yolov8n.tflite # TensorFlow Lite
yolov8n_edgetpu.tflite # TensorFlow Edge TPU
yolov8n_paddle_model # PaddlePaddle
yolov8n.mnn # MNN
yolov8n_ncnn_model # NCNN
"""

View file

@ -59,21 +59,22 @@ class AutoBackend(nn.Module):
range of formats, each with specific naming conventions as outlined below:
Supported Formats and Naming Conventions:
| Format | File Suffix |
|-----------------------|------------------|
| PyTorch | *.pt |
| TorchScript | *.torchscript |
| ONNX Runtime | *.onnx |
| ONNX OpenCV DNN | *.onnx (dnn=True)|
| OpenVINO | *openvino_model/ |
| CoreML | *.mlpackage |
| TensorRT | *.engine |
| TensorFlow SavedModel | *_saved_model |
| TensorFlow GraphDef | *.pb |
| TensorFlow Lite | *.tflite |
| TensorFlow Edge TPU | *_edgetpu.tflite |
| PaddlePaddle | *_paddle_model |
| NCNN | *_ncnn_model |
| Format | File Suffix |
|-----------------------|-------------------|
| PyTorch | *.pt |
| TorchScript | *.torchscript |
| ONNX Runtime | *.onnx |
| ONNX OpenCV DNN | *.onnx (dnn=True) |
| OpenVINO | *openvino_model/ |
| CoreML | *.mlpackage |
| TensorRT | *.engine |
| TensorFlow SavedModel | *_saved_model/ |
| TensorFlow GraphDef | *.pb |
| TensorFlow Lite | *.tflite |
| TensorFlow Edge TPU | *_edgetpu.tflite |
| PaddlePaddle | *_paddle_model/ |
| MNN | *.mnn |
| NCNN | *_ncnn_model/ |
This class offers dynamic backend switching capabilities based on the input model format, making it easier to deploy
models across various platforms.
@ -120,6 +121,7 @@ class AutoBackend(nn.Module):
edgetpu,
tfjs,
paddle,
mnn,
ncnn,
triton,
) = self._model_type(w)
@ -403,6 +405,26 @@ class AutoBackend(nn.Module):
output_names = predictor.get_output_names()
metadata = w.parents[1] / "metadata.yaml"
# MNN
elif mnn:
LOGGER.info(f"Loading {w} for MNN inference...")
check_requirements("MNN") # requires MNN
import os
import MNN
config = {}
config["precision"] = "low"
config["backend"] = "CPU"
config["numThread"] = (os.cpu_count() + 1) // 2
rt = MNN.nn.create_runtime_manager((config,))
net = MNN.nn.load_module_from_file(w, [], [], runtime_manager=rt, rearrange=True)
def torch_to_mnn(x):
return MNN.expr.const(x.data_ptr(), x.shape)
metadata = json.loads(net.get_info()["bizCode"])
# NCNN
elif ncnn:
LOGGER.info(f"Loading {w} for NCNN inference...")
@ -590,6 +612,12 @@ class AutoBackend(nn.Module):
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
# MNN
elif self.mnn:
input_var = self.torch_to_mnn(im)
output_var = self.net.onForward([input_var])
y = [x.read() for x in output_var]
# NCNN
elif self.ncnn:
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())

View file

@ -21,6 +21,7 @@ TensorFlow Lite | `tflite` | yolov8n.tflite
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
MNN | `mnn` | yolov8n.mnn
NCNN | `ncnn` | yolov8n_ncnn_model/
"""
@ -111,8 +112,8 @@ def benchmark(
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet"
assert not is_end2end, "End-to-end models not supported by PaddlePaddle yet"
assert LINUX or MACOS, "Windows Paddle exports not supported yet"
if i in {12}: # NCNN
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 NCNN exports not supported yet"
if i in {12, 13}: # MNN, NCNN
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 MNN, NCNN exports not supported yet"
if "cpu" in device.type:
assert cpu, "inference not supported on CPU"
if "cuda" in device.type:
@ -132,7 +133,7 @@ def benchmark(
assert model.task != "pose" or i != 7, "GraphDef Pose inference is not supported"
assert i not in {9, 10}, "inference not supported" # Edge TPU and TF.js are unsupported
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
if i in {12}:
if i in {13}:
assert not is_end2end, "End-to-end torch.topk operation is not supported for NCNN prediction yet"
exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half)