Update YOLO11 Actions and Docs (#16596)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Ultralytics Assistant 2024-10-01 16:58:12 +02:00 committed by GitHub
parent 51e93d6111
commit 97f38409fb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
124 changed files with 1948 additions and 1948 deletions

View file

@ -1,26 +1,26 @@
---
comments: true
description: Learn about YOLOv8's diverse deployment options to maximize your model's performance. Explore PyTorch, TensorRT, OpenVINO, TF Lite, and more!.
keywords: YOLOv8, deployment options, export formats, PyTorch, TensorRT, OpenVINO, TF Lite, machine learning, model deployment
description: Learn about YOLO11's diverse deployment options to maximize your model's performance. Explore PyTorch, TensorRT, OpenVINO, TF Lite, and more!.
keywords: YOLO11, deployment options, export formats, PyTorch, TensorRT, OpenVINO, TF Lite, machine learning, model deployment
---
# Understanding YOLOv8's Deployment Options
# Understanding YOLO11's Deployment Options
## Introduction
You've come a long way on your journey with YOLOv8. You've diligently collected data, meticulously annotated it, and put in the hours to train and rigorously evaluate your custom YOLOv8 model. Now, it's time to put your model to work for your specific application, use case, or project. But there's a critical decision that stands before you: how to export and deploy your model effectively.
You've come a long way on your journey with YOLO11. You've diligently collected data, meticulously annotated it, and put in the hours to train and rigorously evaluate your custom YOLO11 model. Now, it's time to put your model to work for your specific application, use case, or project. But there's a critical decision that stands before you: how to export and deploy your model effectively.
This guide walks you through YOLOv8's deployment options and the essential factors to consider to choose the right option for your project.
This guide walks you through YOLO11's deployment options and the essential factors to consider to choose the right option for your project.
## How to Select the Right Deployment Option for Your YOLOv8 Model
## How to Select the Right Deployment Option for Your YOLO11 Model
When it's time to deploy your YOLOv8 model, selecting a suitable export format is very important. As outlined in the [Ultralytics YOLOv8 Modes documentation](../modes/export.md#usage-examples), the model.export() function allows for converting your trained model into a variety of formats tailored to diverse environments and performance requirements.
When it's time to deploy your YOLO11 model, selecting a suitable export format is very important. As outlined in the [Ultralytics YOLO11 Modes documentation](../modes/export.md#usage-examples), the model.export() function allows for converting your trained model into a variety of formats tailored to diverse environments and performance requirements.
The ideal format depends on your model's intended operational context, balancing speed, hardware constraints, and ease of integration. In the following section, we'll take a closer look at each export option, understanding when to choose each one.
### YOLOv8's Deployment Options
### YOLO11's Deployment Options
Let's walk through the different YOLOv8 deployment options. For a detailed walkthrough of the export process, visit the [Ultralytics documentation page on exporting](../modes/export.md).
Let's walk through the different YOLO11 deployment options. For a detailed walkthrough of the export process, visit the [Ultralytics documentation page on exporting](../modes/export.md).
#### PyTorch
@ -258,9 +258,9 @@ NCNN is a high-performance neural network inference framework optimized for the
- **Hardware Acceleration**: Tailored for ARM CPUs and GPUs, with specific optimizations for these architectures.
## Comparative Analysis of YOLOv8 Deployment Options
## Comparative Analysis of YOLO11 Deployment Options
The following table provides a snapshot of the various deployment options available for YOLOv8 models, helping you to assess which may best fit your project needs based on several critical criteria. For an in-depth look at each deployment option's format, please see the [Ultralytics documentation page on export formats](../modes/export.md#export-formats).
The following table provides a snapshot of the various deployment options available for YOLO11 models, helping you to assess which may best fit your project needs based on several critical criteria. For an in-depth look at each deployment option's format, please see the [Ultralytics documentation page on export formats](../modes/export.md#export-formats).
| Deployment Option | Performance Benchmarks | Compatibility and Integration | Community Support and Ecosystem | Case Studies | Maintenance and Updates | Security Considerations | Hardware Acceleration |
| ----------------- | ----------------------------------------------- | ---------------------------------------------- | --------------------------------------------- | ------------------------------------------ | ------------------------------------------- | ------------------------------------------------- | ---------------------------------- |
@ -282,33 +282,33 @@ This comparative analysis gives you a high-level overview. For deployment, it's
## Community and Support
When you're getting started with YOLOv8, having a helpful community and support can make a significant impact. Here's how to connect with others who share your interests and get the assistance you need.
When you're getting started with YOLO11, having a helpful community and support can make a significant impact. Here's how to connect with others who share your interests and get the assistance you need.
### Engage with the Broader Community
- **GitHub Discussions:** The YOLOv8 repository on GitHub has a "Discussions" section where you can ask questions, report issues, and suggest improvements.
- **GitHub Discussions:** The YOLO11 repository on GitHub has a "Discussions" section where you can ask questions, report issues, and suggest improvements.
- **Ultralytics Discord Server:** Ultralytics has a [Discord server](https://discord.com/invite/ultralytics) where you can interact with other users and developers.
### Official Documentation and Resources
- **Ultralytics YOLOv8 Docs:** The [official documentation](../index.md) provides a comprehensive overview of YOLOv8, along with guides on installation, usage, and troubleshooting.
- **Ultralytics YOLO11 Docs:** The [official documentation](../index.md) provides a comprehensive overview of YOLO11, along with guides on installation, usage, and troubleshooting.
These resources will help you tackle challenges and stay updated on the latest trends and best practices in the YOLOv8 community.
These resources will help you tackle challenges and stay updated on the latest trends and best practices in the YOLO11 community.
## Conclusion
In this guide, we've explored the different deployment options for YOLOv8. We've also discussed the important factors to consider when making your choice. These options allow you to customize your model for various environments and performance requirements, making it suitable for real-world applications.
In this guide, we've explored the different deployment options for YOLO11. We've also discussed the important factors to consider when making your choice. These options allow you to customize your model for various environments and performance requirements, making it suitable for real-world applications.
Don't forget that the YOLOv8 and Ultralytics community is a valuable source of help. Connect with other developers and experts to learn unique tips and solutions you might not find in regular documentation. Keep seeking knowledge, exploring new ideas, and sharing your experiences.
Don't forget that the YOLO11 and Ultralytics community is a valuable source of help. Connect with other developers and experts to learn unique tips and solutions you might not find in regular documentation. Keep seeking knowledge, exploring new ideas, and sharing your experiences.
Happy deploying!
## FAQ
### What are the deployment options available for YOLOv8 on different hardware platforms?
### What are the deployment options available for YOLO11 on different hardware platforms?
Ultralytics YOLOv8 supports various deployment formats, each designed for specific environments and hardware platforms. Key formats include:
Ultralytics YOLO11 supports various deployment formats, each designed for specific environments and hardware platforms. Key formats include:
- **PyTorch** for research and prototyping, with excellent Python integration.
- **TorchScript** for production environments where Python is unavailable.
@ -318,18 +318,18 @@ Ultralytics YOLOv8 supports various deployment formats, each designed for specif
Each format has unique advantages. For a detailed walkthrough, see our [export process documentation](../modes/export.md#usage-examples).
### How do I improve the inference speed of my YOLOv8 model on an Intel CPU?
### How do I improve the inference speed of my YOLO11 model on an Intel CPU?
To enhance inference speed on Intel CPUs, you can deploy your YOLOv8 model using Intel's OpenVINO toolkit. OpenVINO offers significant performance boosts by optimizing models to leverage Intel hardware efficiently.
To enhance inference speed on Intel CPUs, you can deploy your YOLO11 model using Intel's OpenVINO toolkit. OpenVINO offers significant performance boosts by optimizing models to leverage Intel hardware efficiently.
1. Convert your YOLOv8 model to the OpenVINO format using the `model.export()` function.
1. Convert your YOLO11 model to the OpenVINO format using the `model.export()` function.
2. Follow the detailed setup guide in the [Intel OpenVINO Export documentation](../integrations/openvino.md).
For more insights, check out our [blog post](https://www.ultralytics.com/blog/achieve-faster-inference-speeds-ultralytics-yolov8-openvino).
### Can I deploy YOLOv8 models on mobile devices?
### Can I deploy YOLO11 models on mobile devices?
Yes, YOLOv8 models can be deployed on mobile devices using [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) Lite (TF Lite) for both Android and iOS platforms. TF Lite is designed for mobile and embedded devices, providing efficient on-device inference.
Yes, YOLO11 models can be deployed on mobile devices using [TensorFlow](https://www.ultralytics.com/glossary/tensorflow) Lite (TF Lite) for both Android and iOS platforms. TF Lite is designed for mobile and embedded devices, providing efficient on-device inference.
!!! example
@ -349,9 +349,9 @@ Yes, YOLOv8 models can be deployed on mobile devices using [TensorFlow](https://
For more details on deploying models to mobile, refer to our [TF Lite integration guide](../integrations/tflite.md).
### What factors should I consider when choosing a deployment format for my YOLOv8 model?
### What factors should I consider when choosing a deployment format for my YOLO11 model?
When choosing a deployment format for YOLOv8, consider the following factors:
When choosing a deployment format for YOLO11, consider the following factors:
- **Performance**: Some formats like TensorRT provide exceptional speeds on NVIDIA GPUs, while OpenVINO is optimized for Intel hardware.
- **Compatibility**: ONNX offers broad compatibility across different platforms.
@ -360,11 +360,11 @@ When choosing a deployment format for YOLOv8, consider the following factors:
For a comparative analysis, refer to our [export formats documentation](../modes/export.md#export-formats).
### How can I deploy YOLOv8 models in a web application?
### How can I deploy YOLO11 models in a web application?
To deploy YOLOv8 models in a web application, you can use TensorFlow.js (TF.js), which allows for running [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) models directly in the browser. This approach eliminates the need for backend infrastructure and provides real-time performance.
To deploy YOLO11 models in a web application, you can use TensorFlow.js (TF.js), which allows for running [machine learning](https://www.ultralytics.com/glossary/machine-learning-ml) models directly in the browser. This approach eliminates the need for backend infrastructure and provides real-time performance.
1. Export the YOLOv8 model to the TF.js format.
1. Export the YOLO11 model to the TF.js format.
2. Integrate the exported model into your web application.
For step-by-step instructions, refer to our guide on [TensorFlow.js integration](../integrations/tfjs.md).