Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -1,7 +1,7 @@
|
|||
---
|
||||
comments: true
|
||||
description: Learn to extract isolated objects from inference results using Ultralytics Predict Mode. Step-by-step guide for segmentation object isolation.
|
||||
keywords: Ultralytics, segmentation, object isolation, Predict Mode, YOLOv8, machine learning, object detection, binary mask, image processing
|
||||
keywords: Ultralytics, segmentation, object isolation, Predict Mode, YOLO11, machine learning, object detection, binary mask, image processing
|
||||
---
|
||||
|
||||
# Isolating Segmentation Objects
|
||||
|
|
@ -24,7 +24,7 @@ After performing the [Segment Task](../tasks/segment.md), it's sometimes desirab
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt")
|
||||
model = YOLO("yolo11n-seg.pt")
|
||||
|
||||
# Run inference
|
||||
results = model.predict()
|
||||
|
|
@ -267,7 +267,7 @@ import numpy as np
|
|||
|
||||
from ultralytics import YOLO
|
||||
|
||||
m = YOLO("yolov8n-seg.pt") # (4)!
|
||||
m = YOLO("yolo11n-seg.pt") # (4)!
|
||||
res = m.predict() # (3)!
|
||||
|
||||
# Iterate detection results (5)
|
||||
|
|
@ -310,16 +310,16 @@ for r in res:
|
|||
|
||||
## FAQ
|
||||
|
||||
### How do I isolate objects using Ultralytics YOLOv8 for segmentation tasks?
|
||||
### How do I isolate objects using Ultralytics YOLO11 for segmentation tasks?
|
||||
|
||||
To isolate objects using Ultralytics YOLOv8, follow these steps:
|
||||
To isolate objects using Ultralytics YOLO11, follow these steps:
|
||||
|
||||
1. **Load the model and run inference:**
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n-seg.pt")
|
||||
model = YOLO("yolo11n-seg.pt")
|
||||
results = model.predict(source="path/to/your/image.jpg")
|
||||
```
|
||||
|
||||
|
|
@ -345,7 +345,7 @@ Refer to the guide on [Predict Mode](../modes/predict.md) and the [Segment Task]
|
|||
|
||||
### What options are available for saving the isolated objects after segmentation?
|
||||
|
||||
Ultralytics YOLOv8 offers two main options for saving isolated objects:
|
||||
Ultralytics YOLO11 offers two main options for saving isolated objects:
|
||||
|
||||
1. **With a Black Background:**
|
||||
|
||||
|
|
@ -361,7 +361,7 @@ Ultralytics YOLOv8 offers two main options for saving isolated objects:
|
|||
|
||||
For further details, visit the [Predict Mode](../modes/predict.md) section.
|
||||
|
||||
### How can I crop isolated objects to their bounding boxes using Ultralytics YOLOv8?
|
||||
### How can I crop isolated objects to their bounding boxes using Ultralytics YOLO11?
|
||||
|
||||
To crop isolated objects to their bounding boxes:
|
||||
|
||||
|
|
@ -378,9 +378,9 @@ To crop isolated objects to their bounding boxes:
|
|||
|
||||
Learn more about bounding box results in the [Predict Mode](../modes/predict.md#boxes) documentation.
|
||||
|
||||
### Why should I use Ultralytics YOLOv8 for object isolation in segmentation tasks?
|
||||
### Why should I use Ultralytics YOLO11 for object isolation in segmentation tasks?
|
||||
|
||||
Ultralytics YOLOv8 provides:
|
||||
Ultralytics YOLO11 provides:
|
||||
|
||||
- **High-speed** real-time object detection and segmentation.
|
||||
- **Accurate bounding box and mask generation** for precise object isolation.
|
||||
|
|
@ -388,9 +388,9 @@ Ultralytics YOLOv8 provides:
|
|||
|
||||
Explore the benefits of using YOLO in the [Segment Task documentation](../tasks/segment.md).
|
||||
|
||||
### Can I save isolated objects including the background using Ultralytics YOLOv8?
|
||||
### Can I save isolated objects including the background using Ultralytics YOLO11?
|
||||
|
||||
Yes, this is a built-in feature in Ultralytics YOLOv8. Use the `save_crop` argument in the `predict()` method. For example:
|
||||
Yes, this is a built-in feature in Ultralytics YOLO11. Use the `save_crop` argument in the `predict()` method. For example:
|
||||
|
||||
```python
|
||||
results = model.predict(source="path/to/your/image.jpg", save_crop=True)
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue