Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -1,10 +1,10 @@
|
|||
---
|
||||
comments: true
|
||||
description: Learn how to deploy Ultralytics YOLOv8 on NVIDIA Jetson devices using TensorRT and DeepStream SDK. Explore performance benchmarks and maximize AI capabilities.
|
||||
keywords: Ultralytics, YOLOv8, NVIDIA Jetson, JetPack, AI deployment, embedded systems, deep learning, TensorRT, DeepStream SDK, computer vision
|
||||
description: Learn how to deploy Ultralytics YOLO11 on NVIDIA Jetson devices using TensorRT and DeepStream SDK. Explore performance benchmarks and maximize AI capabilities.
|
||||
keywords: Ultralytics, YOLO11, NVIDIA Jetson, JetPack, AI deployment, embedded systems, deep learning, TensorRT, DeepStream SDK, computer vision
|
||||
---
|
||||
|
||||
# Ultralytics YOLOv8 on NVIDIA Jetson using DeepStream SDK and TensorRT
|
||||
# Ultralytics YOLO11 on NVIDIA Jetson using DeepStream SDK and TensorRT
|
||||
|
||||
<p align="center">
|
||||
<br>
|
||||
|
|
@ -14,10 +14,10 @@ keywords: Ultralytics, YOLOv8, NVIDIA Jetson, JetPack, AI deployment, embedded s
|
|||
allowfullscreen>
|
||||
</iframe>
|
||||
<br>
|
||||
<strong>Watch:</strong> How to Run Multiple Streams with DeepStream SDK on Jetson Nano using Ultralytics YOLOv8
|
||||
<strong>Watch:</strong> How to Run Multiple Streams with DeepStream SDK on Jetson Nano using Ultralytics YOLO11
|
||||
</p>
|
||||
|
||||
This comprehensive guide provides a detailed walkthrough for deploying Ultralytics YOLOv8 on [NVIDIA Jetson](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) devices using DeepStream SDK and TensorRT. Here we use TensorRT to maximize the inference performance on the Jetson platform.
|
||||
This comprehensive guide provides a detailed walkthrough for deploying Ultralytics YOLO11 on [NVIDIA Jetson](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) devices using DeepStream SDK and TensorRT. Here we use TensorRT to maximize the inference performance on the Jetson platform.
|
||||
|
||||
<img width="1024" src="https://github.com/ultralytics/docs/releases/download/0/deepstream-nvidia-jetson.avif" alt="DeepStream on NVIDIA Jetson">
|
||||
|
||||
|
|
@ -33,7 +33,7 @@ This comprehensive guide provides a detailed walkthrough for deploying Ultralyti
|
|||
|
||||
Before you start to follow this guide:
|
||||
|
||||
- Visit our documentation, [Quick Start Guide: NVIDIA Jetson with Ultralytics YOLOv8](nvidia-jetson.md) to set up your NVIDIA Jetson device with Ultralytics YOLOv8
|
||||
- Visit our documentation, [Quick Start Guide: NVIDIA Jetson with Ultralytics YOLO11](nvidia-jetson.md) to set up your NVIDIA Jetson device with Ultralytics YOLO11
|
||||
- Install [DeepStream SDK](https://developer.nvidia.com/deepstream-getting-started) according to the JetPack version
|
||||
|
||||
- For JetPack 4.6.4, install [DeepStream 6.0.1](https://docs.nvidia.com/metropolis/deepstream/6.0.1/dev-guide/text/DS_Quickstart.html)
|
||||
|
|
@ -43,7 +43,7 @@ Before you start to follow this guide:
|
|||
|
||||
In this guide we have used the Debian package method of installing DeepStream SDK to the Jetson device. You can also visit the [DeepStream SDK on Jetson (Archived)](https://developer.nvidia.com/embedded/deepstream-on-jetson-downloads-archived) to access legacy versions of DeepStream.
|
||||
|
||||
## DeepStream Configuration for YOLOv8
|
||||
## DeepStream Configuration for YOLO11
|
||||
|
||||
Here we are using [marcoslucianops/DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) GitHub repository which includes NVIDIA DeepStream SDK support for YOLO models. We appreciate the efforts of marcoslucianops for his contributions!
|
||||
|
||||
|
|
@ -61,7 +61,7 @@ Here we are using [marcoslucianops/DeepStream-Yolo](https://github.com/marcosluc
|
|||
cd DeepStream-Yolo
|
||||
```
|
||||
|
||||
3. Download Ultralytics YOLOv8 detection model (.pt) of your choice from [YOLOv8 releases](https://github.com/ultralytics/assets/releases). Here we use [yolov8s.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt).
|
||||
3. Download Ultralytics YOLO11 detection model (.pt) of your choice from [YOLO11 releases](https://github.com/ultralytics/assets/releases). Here we use [yolov8s.pt](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt).
|
||||
|
||||
```bash
|
||||
wget https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s.pt
|
||||
|
|
@ -69,7 +69,7 @@ Here we are using [marcoslucianops/DeepStream-Yolo](https://github.com/marcosluc
|
|||
|
||||
!!! note
|
||||
|
||||
You can also use a [custom trained YOLOv8 model](https://docs.ultralytics.com/modes/train/).
|
||||
You can also use a [custom trained YOLO11 model](https://docs.ultralytics.com/modes/train/).
|
||||
|
||||
4. Convert model to ONNX
|
||||
|
||||
|
|
@ -179,7 +179,7 @@ deepstream-app -c deepstream_app_config.txt
|
|||
|
||||
It will take a long time to generate the TensorRT engine file before starting the inference. So please be patient.
|
||||
|
||||
<div align=center><img width=1000 src="https://github.com/ultralytics/docs/releases/download/0/yolov8-with-deepstream.avif" alt="YOLOv8 with deepstream"></div>
|
||||
<div align=center><img width=1000 src="https://github.com/ultralytics/docs/releases/download/0/yolov8-with-deepstream.avif" alt="YOLO11 with deepstream"></div>
|
||||
|
||||
!!! tip
|
||||
|
||||
|
|
@ -317,21 +317,21 @@ This guide was initially created by our friends at Seeed Studio, Lakshantha and
|
|||
|
||||
## FAQ
|
||||
|
||||
### How do I set up Ultralytics YOLOv8 on an NVIDIA Jetson device?
|
||||
### How do I set up Ultralytics YOLO11 on an NVIDIA Jetson device?
|
||||
|
||||
To set up Ultralytics YOLOv8 on an [NVIDIA Jetson](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) device, you first need to install the [DeepStream SDK](https://developer.nvidia.com/deepstream-getting-started) compatible with your JetPack version. Follow the step-by-step guide in our [Quick Start Guide](nvidia-jetson.md) to configure your NVIDIA Jetson for YOLOv8 deployment.
|
||||
To set up Ultralytics YOLO11 on an [NVIDIA Jetson](https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/) device, you first need to install the [DeepStream SDK](https://developer.nvidia.com/deepstream-getting-started) compatible with your JetPack version. Follow the step-by-step guide in our [Quick Start Guide](nvidia-jetson.md) to configure your NVIDIA Jetson for YOLO11 deployment.
|
||||
|
||||
### What is the benefit of using TensorRT with YOLOv8 on NVIDIA Jetson?
|
||||
### What is the benefit of using TensorRT with YOLO11 on NVIDIA Jetson?
|
||||
|
||||
Using TensorRT with YOLOv8 optimizes the model for inference, significantly reducing latency and improving throughput on NVIDIA Jetson devices. TensorRT provides high-performance, low-latency [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) inference through layer fusion, precision calibration, and kernel auto-tuning. This leads to faster and more efficient execution, particularly useful for real-time applications like video analytics and autonomous machines.
|
||||
Using TensorRT with YOLO11 optimizes the model for inference, significantly reducing latency and improving throughput on NVIDIA Jetson devices. TensorRT provides high-performance, low-latency [deep learning](https://www.ultralytics.com/glossary/deep-learning-dl) inference through layer fusion, precision calibration, and kernel auto-tuning. This leads to faster and more efficient execution, particularly useful for real-time applications like video analytics and autonomous machines.
|
||||
|
||||
### Can I run Ultralytics YOLOv8 with DeepStream SDK across different NVIDIA Jetson hardware?
|
||||
### Can I run Ultralytics YOLO11 with DeepStream SDK across different NVIDIA Jetson hardware?
|
||||
|
||||
Yes, the guide for deploying Ultralytics YOLOv8 with the DeepStream SDK and TensorRT is compatible across the entire NVIDIA Jetson lineup. This includes devices like the Jetson Orin NX 16GB with [JetPack 5.1.3](https://developer.nvidia.com/embedded/jetpack-sdk-513) and the Jetson Nano 4GB with [JetPack 4.6.4](https://developer.nvidia.com/jetpack-sdk-464). Refer to the section [DeepStream Configuration for YOLOv8](#deepstream-configuration-for-yolov8) for detailed steps.
|
||||
Yes, the guide for deploying Ultralytics YOLO11 with the DeepStream SDK and TensorRT is compatible across the entire NVIDIA Jetson lineup. This includes devices like the Jetson Orin NX 16GB with [JetPack 5.1.3](https://developer.nvidia.com/embedded/jetpack-sdk-513) and the Jetson Nano 4GB with [JetPack 4.6.4](https://developer.nvidia.com/jetpack-sdk-464). Refer to the section [DeepStream Configuration for YOLO11](#deepstream-configuration-for-yolo11) for detailed steps.
|
||||
|
||||
### How can I convert a YOLOv8 model to ONNX for DeepStream?
|
||||
### How can I convert a YOLO11 model to ONNX for DeepStream?
|
||||
|
||||
To convert a YOLOv8 model to ONNX format for deployment with DeepStream, use the `utils/export_yoloV8.py` script from the [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) repository.
|
||||
To convert a YOLO11 model to ONNX format for deployment with DeepStream, use the `utils/export_yoloV8.py` script from the [DeepStream-Yolo](https://github.com/marcoslucianops/DeepStream-Yolo) repository.
|
||||
|
||||
Here's an example command:
|
||||
|
||||
|
|
@ -341,12 +341,12 @@ python3 utils/export_yoloV8.py -w yolov8s.pt --opset 12 --simplify
|
|||
|
||||
For more details on model conversion, check out our [model export section](../modes/export.md).
|
||||
|
||||
### What are the performance benchmarks for YOLOv8 on NVIDIA Jetson Orin NX?
|
||||
### What are the performance benchmarks for YOLO on NVIDIA Jetson Orin NX?
|
||||
|
||||
The performance of YOLOv8 models on NVIDIA Jetson Orin NX 16GB varies based on TensorRT precision levels. For example, YOLOv8s models achieve:
|
||||
The performance of YOLO11 models on NVIDIA Jetson Orin NX 16GB varies based on TensorRT precision levels. For example, YOLOv8s models achieve:
|
||||
|
||||
- **FP32 Precision**: 15.63 ms/im, 64 FPS
|
||||
- **FP16 Precision**: 7.94 ms/im, 126 FPS
|
||||
- **INT8 Precision**: 5.53 ms/im, 181 FPS
|
||||
|
||||
These benchmarks underscore the efficiency and capability of using TensorRT-optimized YOLOv8 models on NVIDIA Jetson hardware. For further details, see our [Benchmark Results](#benchmark-results) section.
|
||||
These benchmarks underscore the efficiency and capability of using TensorRT-optimized YOLO11 models on NVIDIA Jetson hardware. For further details, see our [Benchmark Results](#benchmark-results) section.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue