Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -1,10 +1,10 @@
|
|||
---
|
||||
comments: true
|
||||
description: Learn to create line graphs, bar plots, and pie charts using Python with guided instructions and code snippets. Maximize your data visualization skills!.
|
||||
keywords: Ultralytics, YOLOv8, data visualization, line graphs, bar plots, pie charts, Python, analytics, tutorial, guide
|
||||
keywords: Ultralytics, YOLO11, data visualization, line graphs, bar plots, pie charts, Python, analytics, tutorial, guide
|
||||
---
|
||||
|
||||
# Analytics using Ultralytics YOLOv8
|
||||
# Analytics using Ultralytics YOLO11
|
||||
|
||||
## Introduction
|
||||
|
||||
|
|
@ -42,7 +42,7 @@ This guide provides a comprehensive overview of three fundamental types of [data
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
|
@ -91,7 +91,7 @@ This guide provides a comprehensive overview of three fundamental types of [data
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
|
@ -152,7 +152,7 @@ This guide provides a comprehensive overview of three fundamental types of [data
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
|
@ -202,7 +202,7 @@ This guide provides a comprehensive overview of three fundamental types of [data
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
|
@ -252,7 +252,7 @@ This guide provides a comprehensive overview of three fundamental types of [data
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
|
||||
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
||||
assert cap.isOpened(), "Error reading video file"
|
||||
|
|
@ -330,11 +330,11 @@ Understanding when and how to use different types of visualizations is crucial f
|
|||
|
||||
## FAQ
|
||||
|
||||
### How do I create a line graph using Ultralytics YOLOv8 Analytics?
|
||||
### How do I create a line graph using Ultralytics YOLO11 Analytics?
|
||||
|
||||
To create a line graph using Ultralytics YOLOv8 Analytics, follow these steps:
|
||||
To create a line graph using Ultralytics YOLO11 Analytics, follow these steps:
|
||||
|
||||
1. Load a YOLOv8 model and open your video file.
|
||||
1. Load a YOLO11 model and open your video file.
|
||||
2. Initialize the `Analytics` class with the type set to "line."
|
||||
3. Iterate through video frames, updating the line graph with relevant data, such as object counts per frame.
|
||||
4. Save the output video displaying the line graph.
|
||||
|
|
@ -346,7 +346,7 @@ import cv2
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
out = cv2.VideoWriter("line_plot.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
|
||||
|
||||
|
|
@ -366,11 +366,11 @@ out.release()
|
|||
cv2.destroyAllWindows()
|
||||
```
|
||||
|
||||
For further details on configuring the `Analytics` class, visit the [Analytics using Ultralytics YOLOv8 📊](#analytics-using-ultralytics-yolov8) section.
|
||||
For further details on configuring the `Analytics` class, visit the [Analytics using Ultralytics YOLO11 📊](#analytics-using-ultralytics-yolo11) section.
|
||||
|
||||
### What are the benefits of using Ultralytics YOLOv8 for creating bar plots?
|
||||
### What are the benefits of using Ultralytics YOLO11 for creating bar plots?
|
||||
|
||||
Using Ultralytics YOLOv8 for creating bar plots offers several benefits:
|
||||
Using Ultralytics YOLO11 for creating bar plots offers several benefits:
|
||||
|
||||
1. **Real-time Data Visualization**: Seamlessly integrate [object detection](https://www.ultralytics.com/glossary/object-detection) results into bar plots for dynamic updates.
|
||||
2. **Ease of Use**: Simple API and functions make it straightforward to implement and visualize data.
|
||||
|
|
@ -384,7 +384,7 @@ import cv2
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
out = cv2.VideoWriter("bar_plot.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
|
||||
|
||||
|
|
@ -409,9 +409,9 @@ cv2.destroyAllWindows()
|
|||
|
||||
To learn more, visit the [Bar Plot](#visual-samples) section in the guide.
|
||||
|
||||
### Why should I use Ultralytics YOLOv8 for creating pie charts in my data visualization projects?
|
||||
### Why should I use Ultralytics YOLO11 for creating pie charts in my data visualization projects?
|
||||
|
||||
Ultralytics YOLOv8 is an excellent choice for creating pie charts because:
|
||||
Ultralytics YOLO11 is an excellent choice for creating pie charts because:
|
||||
|
||||
1. **Integration with Object Detection**: Directly integrate object detection results into pie charts for immediate insights.
|
||||
2. **User-Friendly API**: Simple to set up and use with minimal code.
|
||||
|
|
@ -425,7 +425,7 @@ import cv2
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
out = cv2.VideoWriter("pie_chart.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
|
||||
|
||||
|
|
@ -450,9 +450,9 @@ cv2.destroyAllWindows()
|
|||
|
||||
For more information, refer to the [Pie Chart](#visual-samples) section in the guide.
|
||||
|
||||
### Can Ultralytics YOLOv8 be used to track objects and dynamically update visualizations?
|
||||
### Can Ultralytics YOLO11 be used to track objects and dynamically update visualizations?
|
||||
|
||||
Yes, Ultralytics YOLOv8 can be used to track objects and dynamically update visualizations. It supports tracking multiple objects in real-time and can update various visualizations like line graphs, bar plots, and pie charts based on the tracked objects' data.
|
||||
Yes, Ultralytics YOLO11 can be used to track objects and dynamically update visualizations. It supports tracking multiple objects in real-time and can update various visualizations like line graphs, bar plots, and pie charts based on the tracked objects' data.
|
||||
|
||||
Example for tracking and updating a line graph:
|
||||
|
||||
|
|
@ -461,7 +461,7 @@ import cv2
|
|||
|
||||
from ultralytics import YOLO, solutions
|
||||
|
||||
model = YOLO("yolov8s.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
cap = cv2.VideoCapture("Path/to/video/file.mp4")
|
||||
out = cv2.VideoWriter("line_plot.avi", cv2.VideoWriter_fourcc(*"MJPG"), fps, (w, h))
|
||||
|
||||
|
|
@ -483,11 +483,11 @@ cv2.destroyAllWindows()
|
|||
|
||||
To learn about the complete functionality, see the [Tracking](../modes/track.md) section.
|
||||
|
||||
### What makes Ultralytics YOLOv8 different from other object detection solutions like [OpenCV](https://www.ultralytics.com/glossary/opencv) and [TensorFlow](https://www.ultralytics.com/glossary/tensorflow)?
|
||||
### What makes Ultralytics YOLO11 different from other object detection solutions like [OpenCV](https://www.ultralytics.com/glossary/opencv) and [TensorFlow](https://www.ultralytics.com/glossary/tensorflow)?
|
||||
|
||||
Ultralytics YOLOv8 stands out from other object detection solutions like OpenCV and TensorFlow for multiple reasons:
|
||||
Ultralytics YOLO11 stands out from other object detection solutions like OpenCV and TensorFlow for multiple reasons:
|
||||
|
||||
1. **State-of-the-art [Accuracy](https://www.ultralytics.com/glossary/accuracy)**: YOLOv8 provides superior accuracy in object detection, segmentation, and classification tasks.
|
||||
1. **State-of-the-art [Accuracy](https://www.ultralytics.com/glossary/accuracy)**: YOLO11 provides superior accuracy in object detection, segmentation, and classification tasks.
|
||||
2. **Ease of Use**: User-friendly API allows for quick implementation and integration without extensive coding.
|
||||
3. **Real-time Performance**: Optimized for high-speed inference, suitable for real-time applications.
|
||||
4. **Diverse Applications**: Supports various tasks including multi-object tracking, custom model training, and exporting to different formats like ONNX, TensorRT, and CoreML.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue