Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -74,7 +74,7 @@ The `train` and `val` fields specify the paths to the directories containing the
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco8-seg.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -84,7 +84,7 @@ The `train` and `val` fields specify the paths to the directories containing the
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=coco8-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco8-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Supported Datasets
|
||||
|
|
@ -137,13 +137,13 @@ To auto-annotate your dataset using the Ultralytics framework, you can use the `
|
|||
```python
|
||||
from ultralytics.data.annotator import auto_annotate
|
||||
|
||||
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam_b.pt")
|
||||
auto_annotate(data="path/to/images", det_model="yolo11x.pt", sam_model="sam_b.pt")
|
||||
```
|
||||
|
||||
| Argument | Type | Description | Default |
|
||||
| ------------ | ----------------------- | ----------------------------------------------------------------------------------------------------------- | -------------- |
|
||||
| `data` | `str` | Path to a folder containing images to be annotated. | `None` |
|
||||
| `det_model` | `str, optional` | Pre-trained YOLO detection model. Defaults to `'yolov8x.pt'`. | `'yolov8x.pt'` |
|
||||
| `det_model` | `str, optional` | Pre-trained YOLO detection model. Defaults to `'yolo11x.pt'`. | `'yolo11x.pt'` |
|
||||
| `sam_model` | `str, optional` | Pre-trained SAM segmentation model. Defaults to `'sam_b.pt'`. | `'sam_b.pt'` |
|
||||
| `device` | `str, optional` | Device to run the models on. Defaults to an empty string (CPU or GPU, if available). | `''` |
|
||||
| `output_dir` | `str or None, optional` | Directory to save the annotated results. Defaults to a `'labels'` folder in the same directory as `'data'`. | `None` |
|
||||
|
|
@ -195,7 +195,7 @@ Auto-annotation in Ultralytics YOLO allows you to generate segmentation annotati
|
|||
```python
|
||||
from ultralytics.data.annotator import auto_annotate
|
||||
|
||||
auto_annotate(data="path/to/images", det_model="yolov8x.pt", sam_model="sam_b.pt")
|
||||
auto_annotate(data="path/to/images", det_model="yolo11x.pt", sam_model="sam_b.pt")
|
||||
```
|
||||
|
||||
This function automates the annotation process, making it faster and more efficient. For more details, explore the [Auto-Annotation](#auto-annotation) section.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue