Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -1,7 +1,7 @@
|
|||
---
|
||||
comments: true
|
||||
description: Explore the COCO-Seg dataset, an extension of COCO, with detailed segmentation annotations. Learn how to train YOLO models with COCO-Seg.
|
||||
keywords: COCO-Seg, dataset, YOLO models, instance segmentation, object detection, COCO dataset, YOLOv8, computer vision, Ultralytics, machine learning
|
||||
keywords: COCO-Seg, dataset, YOLO models, instance segmentation, object detection, COCO dataset, YOLO11, computer vision, Ultralytics, machine learning
|
||||
---
|
||||
|
||||
# COCO-Seg Dataset
|
||||
|
|
@ -12,11 +12,11 @@ The [COCO-Seg](https://cocodataset.org/#home) dataset, an extension of the COCO
|
|||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
||||
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
||||
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
||||
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
||||
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
||||
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
||||
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
||||
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
||||
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
|
||||
## Key Features
|
||||
|
||||
|
|
@ -49,7 +49,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
|
|||
|
||||
## Usage
|
||||
|
||||
To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
To train a YOLO11n-seg model on the COCO-Seg dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! example "Train Example"
|
||||
|
||||
|
|
@ -59,7 +59,7 @@ To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 [epochs](https://ww
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco-seg.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -69,7 +69,7 @@ To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 [epochs](https://ww
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=coco-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Sample Images and Annotations
|
||||
|
|
@ -109,9 +109,9 @@ We extend our thanks to the COCO Consortium for creating and maintaining this in
|
|||
|
||||
The [COCO-Seg](https://cocodataset.org/#home) dataset is an extension of the original COCO (Common Objects in Context) dataset, specifically designed for instance segmentation tasks. While it uses the same images as the COCO dataset, COCO-Seg includes more detailed segmentation annotations, making it a powerful resource for researchers and developers focusing on object instance segmentation.
|
||||
|
||||
### How can I train a YOLOv8 model using the COCO-Seg dataset?
|
||||
### How can I train a YOLO11 model using the COCO-Seg dataset?
|
||||
|
||||
To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a detailed list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
To train a YOLO11n-seg model on the COCO-Seg dataset for 100 epochs with an image size of 640, you can use the following code snippets. For a detailed list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! example "Train Example"
|
||||
|
||||
|
|
@ -121,7 +121,7 @@ To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 epochs with an imag
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-seg.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-seg.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="coco-seg.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -131,7 +131,7 @@ To train a YOLOv8n-seg model on the COCO-Seg dataset for 100 epochs with an imag
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=coco-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
yolo segment train data=coco-seg.yaml model=yolo11n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### What are the key features of the COCO-Seg dataset?
|
||||
|
|
@ -145,15 +145,15 @@ The COCO-Seg dataset includes several key features:
|
|||
|
||||
### What pretrained models are available for COCO-Seg, and what are their performance metrics?
|
||||
|
||||
The COCO-Seg dataset supports multiple pretrained YOLOv8 segmentation models with varying performance metrics. Here's a summary of the available models and their key metrics:
|
||||
The COCO-Seg dataset supports multiple pretrained YOLO11 segmentation models with varying performance metrics. Here's a summary of the available models and their key metrics:
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
||||
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
||||
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
||||
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
||||
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
||||
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
||||
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
||||
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
||||
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
||||
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
|
||||
### How is the COCO-Seg dataset structured and what subsets does it contain?
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue