Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -47,7 +47,7 @@ A YAML (Yet Another Markup Language) file is used to define the dataset configur
|
|||
|
||||
## Usage
|
||||
|
||||
To train a YOLOv8n model on the VisDrone dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
To train a YOLO11n model on the VisDrone dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, you can use the following code snippets. For a comprehensive list of available arguments, refer to the model [Training](../../modes/train.md) page.
|
||||
|
||||
!!! example "Train Example"
|
||||
|
||||
|
|
@ -57,7 +57,7 @@ To train a YOLOv8n model on the VisDrone dataset for 100 [epochs](https://www.ul
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="VisDrone.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -67,7 +67,7 @@ To train a YOLOv8n model on the VisDrone dataset for 100 [epochs](https://www.ul
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=VisDrone.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo detect train data=VisDrone.yaml model=yolo11n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Sample Data and Annotations
|
||||
|
|
@ -113,9 +113,9 @@ The [VisDrone Dataset](https://github.com/VisDrone/VisDrone-Dataset) is a large-
|
|||
- **Diversity**: Collected across 14 cities, in urban and rural settings, under different weather and lighting conditions.
|
||||
- **Tasks**: Split into five main tasks—object detection in images and videos, single-object and multi-object tracking, and crowd counting.
|
||||
|
||||
### How can I use the VisDrone Dataset to train a YOLOv8 model with Ultralytics?
|
||||
### How can I use the VisDrone Dataset to train a YOLO11 model with Ultralytics?
|
||||
|
||||
To train a YOLOv8 model on the VisDrone dataset for 100 epochs with an image size of 640, you can follow these steps:
|
||||
To train a YOLO11 model on the VisDrone dataset for 100 epochs with an image size of 640, you can follow these steps:
|
||||
|
||||
!!! example "Train Example"
|
||||
|
||||
|
|
@ -125,7 +125,7 @@ To train a YOLOv8 model on the VisDrone dataset for 100 epochs with an image siz
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a pretrained model
|
||||
model = YOLO("yolov8n.pt")
|
||||
model = YOLO("yolo11n.pt")
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="VisDrone.yaml", epochs=100, imgsz=640)
|
||||
|
|
@ -135,7 +135,7 @@ To train a YOLOv8 model on the VisDrone dataset for 100 epochs with an image siz
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=VisDrone.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
yolo detect train data=VisDrone.yaml model=yolo11n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
For additional configuration options, please refer to the model [Training](../../modes/train.md) page.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue