Update YOLO11 Actions and Docs (#16596)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Ultralytics Assistant 2024-10-01 16:58:12 +02:00 committed by GitHub
parent 51e93d6111
commit 97f38409fb
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
124 changed files with 1948 additions and 1948 deletions

View file

@ -1,7 +1,7 @@
---
comments: true
description: Discover the Signature Detection Dataset for training models to identify and verify human signatures in various documents. Perfect for document verification and fraud prevention.
keywords: Signature Detection Dataset, document verification, fraud detection, computer vision, YOLOv8, Ultralytics, annotated signatures, training dataset
keywords: Signature Detection Dataset, document verification, fraud detection, computer vision, YOLO11, Ultralytics, annotated signatures, training dataset
---
# Signature Detection Dataset
@ -31,7 +31,7 @@ A YAML (Yet Another Markup Language) file defines the dataset configuration, inc
## Usage
To train a YOLOv8n model on the signature detection dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, use the provided code samples. For a comprehensive list of available parameters, refer to the model's [Training](../../modes/train.md) page.
To train a YOLO11n model on the signature detection dataset for 100 [epochs](https://www.ultralytics.com/glossary/epoch) with an image size of 640, use the provided code samples. For a comprehensive list of available parameters, refer to the model's [Training](../../modes/train.md) page.
!!! example "Train Example"
@ -41,7 +41,7 @@ To train a YOLOv8n model on the signature detection dataset for 100 [epochs](htt
from ultralytics import YOLO
# Load a model
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
model = YOLO("yolo11n.pt") # load a pretrained model (recommended for training)
# Train the model
results = model.train(data="signature.yaml", epochs=100, imgsz=640)
@ -51,7 +51,7 @@ To train a YOLOv8n model on the signature detection dataset for 100 [epochs](htt
```bash
# Start training from a pretrained *.pt model
yolo detect train data=signature.yaml model=yolov8n.pt epochs=100 imgsz=640
yolo detect train data=signature.yaml model=yolo11n.pt epochs=100 imgsz=640
```
!!! example "Inference Example"
@ -95,9 +95,9 @@ The dataset has been released available under the [AGPL-3.0 License](https://git
The Signature Detection Dataset is a collection of annotated images aimed at detecting human signatures within various document types. It can be applied in computer vision tasks such as [object detection](https://www.ultralytics.com/glossary/object-detection) and tracking, primarily for document verification, fraud detection, and archival research. This dataset helps train models to recognize signatures in different contexts, making it valuable for both research and practical applications.
### How do I train a YOLOv8n model on the Signature Detection Dataset?
### How do I train a YOLO11n model on the Signature Detection Dataset?
To train a YOLOv8n model on the Signature Detection Dataset, follow these steps:
To train a YOLO11n model on the Signature Detection Dataset, follow these steps:
1. Download the `signature.yaml` dataset configuration file from [signature.yaml](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/signature.yaml).
2. Use the following Python script or CLI command to start training:
@ -110,7 +110,7 @@ To train a YOLOv8n model on the Signature Detection Dataset, follow these steps:
from ultralytics import YOLO
# Load a pretrained model
model = YOLO("yolov8n.pt")
model = YOLO("yolo11n.pt")
# Train the model
results = model.train(data="signature.yaml", epochs=100, imgsz=640)
@ -119,7 +119,7 @@ To train a YOLOv8n model on the Signature Detection Dataset, follow these steps:
=== "CLI"
```bash
yolo detect train data=signature.yaml model=yolov8n.pt epochs=100 imgsz=640
yolo detect train data=signature.yaml model=yolo11n.pt epochs=100 imgsz=640
```
For more details, refer to the [Training](../../modes/train.md) page.