Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -86,7 +86,7 @@ This structured approach ensures that the model can effectively learn from well-
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="path/to/dataset", epochs=100, imgsz=640)
|
||||
|
|
@ -96,7 +96,7 @@ This structured approach ensures that the model can effectively learn from well-
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=path/to/data model=yolov8n-cls.pt epochs=100 imgsz=640
|
||||
yolo detect train data=path/to/data model=yolo11n-cls.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Supported Datasets
|
||||
|
|
@ -170,7 +170,7 @@ To use your own dataset with Ultralytics YOLO, ensure it follows the specified d
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="path/to/your/dataset", epochs=100, imgsz=640)
|
||||
|
|
@ -182,7 +182,7 @@ More details can be found in the [Adding your own dataset](#adding-your-own-data
|
|||
|
||||
Ultralytics YOLO offers several benefits for image classification, including:
|
||||
|
||||
- **Pretrained Models**: Load pretrained models like `yolov8n-cls.pt` to jump-start your training process.
|
||||
- **Pretrained Models**: Load pretrained models like `yolo11n-cls.pt` to jump-start your training process.
|
||||
- **Ease of Use**: Simple API and CLI commands for training and evaluation.
|
||||
- **High Performance**: State-of-the-art [accuracy](https://www.ultralytics.com/glossary/accuracy) and speed, ideal for real-time applications.
|
||||
- **Support for Multiple Datasets**: Seamless integration with various popular datasets like CIFAR-10, ImageNet, and more.
|
||||
|
|
@ -202,7 +202,7 @@ Training a model using Ultralytics YOLO can be done easily in both Python and CL
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="path/to/dataset", epochs=100, imgsz=640)
|
||||
|
|
@ -213,7 +213,7 @@ Training a model using Ultralytics YOLO can be done easily in both Python and CL
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=path/to/data model=yolov8n-cls.pt epochs=100 imgsz=640
|
||||
yolo detect train data=path/to/data model=yolo11n-cls.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
These examples demonstrate the straightforward process of training a YOLO model using either approach. For more information, visit the [Usage](#usage) section.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue