Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -34,7 +34,7 @@ To train a CNN model on the ImageWoof dataset for 100 [epochs](https://www.ultra
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="imagewoof", epochs=100, imgsz=224)
|
||||
|
|
@ -44,7 +44,7 @@ To train a CNN model on the ImageWoof dataset for 100 [epochs](https://www.ultra
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=imagewoof model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
yolo classify train data=imagewoof model=yolo11n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
|
||||
## Dataset Variants
|
||||
|
|
@ -67,7 +67,7 @@ To use these variants in your training, simply replace 'imagewoof' in the datase
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# For medium-sized dataset
|
||||
model.train(data="imagewoof320", epochs=100, imgsz=224)
|
||||
|
|
@ -80,7 +80,7 @@ To use these variants in your training, simply replace 'imagewoof' in the datase
|
|||
|
||||
```bash
|
||||
# Load a pretrained model and train on the small-sized dataset
|
||||
yolo classify train model=yolov8n-cls.pt data=imagewoof320 epochs=100 imgsz=224
|
||||
yolo classify train model=yolo11n-cls.pt data=imagewoof320 epochs=100 imgsz=224
|
||||
```
|
||||
|
||||
It's important to note that using smaller images will likely yield lower performance in terms of classification accuracy. However, it's an excellent way to iterate quickly in the early stages of model development and prototyping.
|
||||
|
|
@ -116,7 +116,7 @@ To train a [Convolutional Neural Network](https://www.ultralytics.com/glossary/c
|
|||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
model = YOLO("yolov8n-cls.pt") # Load a pretrained model
|
||||
model = YOLO("yolo11n-cls.pt") # Load a pretrained model
|
||||
results = model.train(data="imagewoof", epochs=100, imgsz=224)
|
||||
```
|
||||
|
||||
|
|
@ -124,7 +124,7 @@ To train a [Convolutional Neural Network](https://www.ultralytics.com/glossary/c
|
|||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify train data=imagewoof model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
yolo classify train data=imagewoof model=yolo11n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
|
||||
For more details on available training arguments, refer to the [Training](../../modes/train.md) page.
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue