Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -37,7 +37,7 @@ To train a model on the ImageNette dataset for 100 epochs with a standard image
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="imagenette", epochs=100, imgsz=224)
|
||||
|
|
@ -47,7 +47,7 @@ To train a model on the ImageNette dataset for 100 epochs with a standard image
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
yolo classify train data=imagenette model=yolo11n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
|
||||
## Sample Images and Annotations
|
||||
|
|
@ -72,7 +72,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model with ImageNette160
|
||||
results = model.train(data="imagenette160", epochs=100, imgsz=160)
|
||||
|
|
@ -82,7 +82,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model with ImageNette160
|
||||
yolo classify train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
|
||||
yolo classify train data=imagenette160 model=yolo11n-cls.pt epochs=100 imgsz=160
|
||||
```
|
||||
|
||||
!!! example "Train Example with ImageNette320"
|
||||
|
|
@ -93,7 +93,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model with ImageNette320
|
||||
results = model.train(data="imagenette320", epochs=100, imgsz=320)
|
||||
|
|
@ -103,7 +103,7 @@ To use these datasets, simply replace 'imagenette' with 'imagenette160' or 'imag
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model with ImageNette320
|
||||
yolo classify train data=imagenette320 model=yolov8n-cls.pt epochs=100 imgsz=320
|
||||
yolo classify train data=imagenette320 model=yolo11n-cls.pt epochs=100 imgsz=320
|
||||
```
|
||||
|
||||
These smaller versions of the dataset allow for rapid iterations during the development process while still providing valuable and realistic image classification tasks.
|
||||
|
|
@ -130,7 +130,7 @@ To train a YOLO model on the ImageNette dataset for 100 [epochs](https://www.ult
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="imagenette", epochs=100, imgsz=224)
|
||||
|
|
@ -140,7 +140,7 @@ To train a YOLO model on the ImageNette dataset for 100 [epochs](https://www.ult
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=imagenette model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
yolo classify train data=imagenette model=yolo11n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
|
||||
For more details, see the [Training](../../modes/train.md) documentation page.
|
||||
|
|
@ -167,7 +167,7 @@ Yes, the ImageNette dataset is also available in two resized versions: ImageNett
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt")
|
||||
model = YOLO("yolo11n-cls.pt")
|
||||
|
||||
# Train the model with ImageNette160
|
||||
results = model.train(data="imagenette160", epochs=100, imgsz=160)
|
||||
|
|
@ -177,7 +177,7 @@ Yes, the ImageNette dataset is also available in two resized versions: ImageNett
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model with ImageNette160
|
||||
yolo detect train data=imagenette160 model=yolov8n-cls.pt epochs=100 imgsz=160
|
||||
yolo detect train data=imagenette160 model=yolo11n-cls.pt epochs=100 imgsz=160
|
||||
```
|
||||
|
||||
For more information, refer to [Training with ImageNette160 and ImageNette320](#imagenette160-and-imagenette320).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue