Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -12,11 +12,11 @@ keywords: ImageNet, deep learning, visual recognition, computer vision, pretrain
|
|||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
||||
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||||
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
|
||||
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
|
||||
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
|
||||
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
|
||||
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 69.0 | 88.3 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||||
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 73.8 | 91.7 | 23.4 | 0.35 | 6.4 | 13.5 |
|
||||
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 76.8 | 93.5 | 85.4 | 0.62 | 17.0 | 42.7 |
|
||||
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 76.8 | 93.5 | 163.0 | 0.87 | 37.5 | 99.7 |
|
||||
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.0 | 94.6 | 232.0 | 1.01 | 57.4 | 154.8 |
|
||||
|
||||
## Key Features
|
||||
|
||||
|
|
@ -49,7 +49,7 @@ To train a deep learning model on the ImageNet dataset for 100 [epochs](https://
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="imagenet", epochs=100, imgsz=224)
|
||||
|
|
@ -59,7 +59,7 @@ To train a deep learning model on the ImageNet dataset for 100 [epochs](https://
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=imagenet model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
yolo classify train data=imagenet model=yolo11n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
|
||||
## Sample Images and Annotations
|
||||
|
|
@ -110,7 +110,7 @@ To use a pretrained Ultralytics YOLO model for image classification on the Image
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="imagenet", epochs=100, imgsz=224)
|
||||
|
|
@ -120,14 +120,14 @@ To use a pretrained Ultralytics YOLO model for image classification on the Image
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=imagenet model=yolov8n-cls.pt epochs=100 imgsz=224
|
||||
yolo classify train data=imagenet model=yolo11n-cls.pt epochs=100 imgsz=224
|
||||
```
|
||||
|
||||
For more in-depth training instruction, refer to our [Training page](../../modes/train.md).
|
||||
|
||||
### Why should I use the Ultralytics YOLOv8 pretrained models for my ImageNet dataset projects?
|
||||
### Why should I use the Ultralytics YOLO11 pretrained models for my ImageNet dataset projects?
|
||||
|
||||
Ultralytics YOLOv8 pretrained models offer state-of-the-art performance in terms of speed and [accuracy](https://www.ultralytics.com/glossary/accuracy) for various computer vision tasks. For example, the YOLOv8n-cls model, with a top-1 accuracy of 69.0% and a top-5 accuracy of 88.3%, is optimized for real-time applications. Pretrained models reduce the computational resources required for training from scratch and accelerate development cycles. Learn more about the performance metrics of YOLOv8 models in the [ImageNet Pretrained Models section](#imagenet-pretrained-models).
|
||||
Ultralytics YOLO11 pretrained models offer state-of-the-art performance in terms of speed and [accuracy](https://www.ultralytics.com/glossary/accuracy) for various computer vision tasks. For example, the YOLO11n-cls model, with a top-1 accuracy of 69.0% and a top-5 accuracy of 88.3%, is optimized for real-time applications. Pretrained models reduce the computational resources required for training from scratch and accelerate development cycles. Learn more about the performance metrics of YOLO11 models in the [ImageNet Pretrained Models section](#imagenet-pretrained-models).
|
||||
|
||||
### How is the ImageNet dataset structured, and why is it important?
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue