Update YOLO11 Actions and Docs (#16596)
Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
parent
51e93d6111
commit
97f38409fb
124 changed files with 1948 additions and 1948 deletions
|
|
@ -47,7 +47,7 @@ To train a YOLO model on the Caltech-256 dataset for 100 epochs, you can use the
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model (recommended for training)
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model (recommended for training)
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="caltech256", epochs=100, imgsz=416)
|
||||
|
|
@ -57,7 +57,7 @@ To train a YOLO model on the Caltech-256 dataset for 100 epochs, you can use the
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=caltech256 model=yolov8n-cls.pt epochs=100 imgsz=416
|
||||
yolo classify train data=caltech256 model=yolo11n-cls.pt epochs=100 imgsz=416
|
||||
```
|
||||
|
||||
## Sample Images and Annotations
|
||||
|
|
@ -106,7 +106,7 @@ To train a YOLO model on the Caltech-256 dataset for 100 [epochs](https://www.ul
|
|||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO("yolov8n-cls.pt") # load a pretrained model
|
||||
model = YOLO("yolo11n-cls.pt") # load a pretrained model
|
||||
|
||||
# Train the model
|
||||
results = model.train(data="caltech256", epochs=100, imgsz=416)
|
||||
|
|
@ -116,7 +116,7 @@ To train a YOLO model on the Caltech-256 dataset for 100 [epochs](https://www.ul
|
|||
|
||||
```bash
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=caltech256 model=yolov8n-cls.pt epochs=100 imgsz=416
|
||||
yolo classify train data=caltech256 model=yolo11n-cls.pt epochs=100 imgsz=416
|
||||
```
|
||||
|
||||
### What are the most common use cases for the Caltech-256 dataset?
|
||||
|
|
@ -141,6 +141,6 @@ Ultralytics YOLO models offer several advantages for training on the Caltech-256
|
|||
- **High Accuracy**: YOLO models are known for their state-of-the-art performance in object detection tasks.
|
||||
- **Speed**: They provide real-time inference capabilities, making them suitable for applications requiring quick predictions.
|
||||
- **Ease of Use**: With Ultralytics HUB, users can train, validate, and deploy models without extensive coding.
|
||||
- **Pretrained Models**: Starting from pretrained models, like `yolov8n-cls.pt`, can significantly reduce training time and improve model [accuracy](https://www.ultralytics.com/glossary/accuracy).
|
||||
- **Pretrained Models**: Starting from pretrained models, like `yolo11n-cls.pt`, can significantly reduce training time and improve model [accuracy](https://www.ultralytics.com/glossary/accuracy).
|
||||
|
||||
For more details, explore our [comprehensive training guide](../../modes/train.md).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue