ultralytics 8.2.69 FastSAM prompt inference refactor (#14724)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
82c4bdad10
commit
9532ad7cae
11 changed files with 187 additions and 427 deletions
|
|
@ -68,7 +68,6 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
|
|||
run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt")
|
||||
|
||||
from ultralytics import FastSAM
|
||||
from ultralytics.models.fastsam import FastSAMPrompt
|
||||
from ultralytics.models.sam import Predictor
|
||||
|
||||
# Create a FastSAM model
|
||||
|
|
@ -81,21 +80,10 @@ def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8
|
|||
# Remove small regions
|
||||
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20)
|
||||
|
||||
# Everything prompt
|
||||
prompt_process = FastSAMPrompt(s, everything_results, device="cpu")
|
||||
ann = prompt_process.everything_prompt()
|
||||
|
||||
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2]
|
||||
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300])
|
||||
|
||||
# Text prompt
|
||||
ann = prompt_process.text_prompt(text="a photo of a dog")
|
||||
|
||||
# Point prompt
|
||||
# Points default [[0,0]] [[x1,y1],[x2,y2]]
|
||||
# Point_label default [0] [1,0] 0:background, 1:foreground
|
||||
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1])
|
||||
prompt_process.plot(annotations=ann, output="./")
|
||||
# Run inference with bboxes and points and texts prompt at the same time
|
||||
results = sam_model(
|
||||
source, bboxes=[439, 437, 524, 709], points=[[200, 200]], labels=[1], texts="a photo of a dog"
|
||||
)
|
||||
|
||||
|
||||
def test_mobilesam():
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue