Update YOLOv8-ONNXRuntime-Rust README (#11773)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
6748c6ba75
commit
94f77368a0
2 changed files with 10 additions and 2 deletions
|
|
@ -19,6 +19,7 @@ This repository features a collection of real-world applications and walkthrough
|
|||
| [YOLOv8 Segmentation ONNXRuntime Python](./YOLOv8-Segmentation-ONNXRuntime-Python) | Python/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
|
||||
| [YOLOv8 LibTorch CPP](./YOLOv8-LibTorch-CPP-Inference) | C++/LibTorch | [Myyura](https://github.com/Myyura) |
|
||||
| [YOLOv8 OpenCV INT8 TFLite Python](./YOLOv8-OpenCV-int8-tflite-Python) | Python | [Wamiq Raza](https://github.com/wamiqraza) |
|
||||
| [YOLOv8 All Tasks ONNXRuntime Rust](./YOLOv8-ONNXRuntime-Rust) | Rust/ONNXRuntime | [jamjamjon](https://github.com/jamjamjon) |
|
||||
|
||||
### How to Contribute
|
||||
|
||||
|
|
|
|||
|
|
@ -1,10 +1,17 @@
|
|||
# YOLOv8-ONNXRuntime-Rust for All the Key YOLO Tasks
|
||||
|
||||
This repository provides a Rust demo for performing YOLOv8 tasks like `Classification`, `Segmentation`, `Detection` and `Pose Detection` using ONNXRuntime.
|
||||
This repository provides a Rust demo for performing YOLOv8 tasks like `Classification`, `Segmentation`, `Detection`, `Pose Detection` and `OBB` using ONNXRuntime.
|
||||
|
||||
## Recently Updated
|
||||
|
||||
- Add YOLOv8-OBB demo
|
||||
- Update ONNXRuntime to 1.17.x
|
||||
|
||||
Newly updated YOLOv8 example code is located in this repository (https://github.com/jamjamjon/usls/tree/main/examples/yolov8)
|
||||
|
||||
## Features
|
||||
|
||||
- Support `Classification`, `Segmentation`, `Detection`, `Pose(Keypoints)-Detection` tasks.
|
||||
- Support `Classification`, `Segmentation`, `Detection`, `Pose(Keypoints)-Detection`, `OBB` tasks.
|
||||
- Support `FP16` & `FP32` ONNX models.
|
||||
- Support `CPU`, `CUDA` and `TensorRT` execution provider to accelerate computation.
|
||||
- Support dynamic input shapes(`batch`, `width`, `height`).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue