Fix inaccuracies in OBB docs (#16253)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
cc5643e81c
commit
9307df7974
2 changed files with 14 additions and 10 deletions
|
|
@ -111,15 +111,15 @@ To train a model on the DOTA v1 dataset, you can utilize the following code snip
|
|||
# Create a new YOLOv8n-OBB model from scratch
|
||||
model = YOLO("yolov8n-obb.yaml")
|
||||
|
||||
# Train the model on the DOTAv2 dataset
|
||||
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=640)
|
||||
# Train the model on the DOTAv1 dataset
|
||||
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=1024)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Train a new YOLOv8n-OBB model on the DOTAv2 dataset
|
||||
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
|
||||
# Train a new YOLOv8n-OBB model on the DOTAv1 dataset
|
||||
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=1024
|
||||
```
|
||||
|
||||
## Sample Data and Annotations
|
||||
|
|
@ -180,14 +180,14 @@ To train a model on the DOTA dataset, you can use the following example with Ult
|
|||
model = YOLO("yolov8n-obb.yaml")
|
||||
|
||||
# Train the model on the DOTAv1 dataset
|
||||
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=640)
|
||||
results = model.train(data="DOTAv1.yaml", epochs=100, imgsz=1024)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Train a new YOLOv8n-OBB model on the DOTAv1 dataset
|
||||
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=640
|
||||
yolo obb train data=DOTAv1.yaml model=yolov8n-obb.pt epochs=100 imgsz=1024
|
||||
```
|
||||
|
||||
For more details on how to split and preprocess the DOTA images, refer to the [split DOTA images section](#split-dota-images).
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue