ultralytics 8.0.40 TensorRT metadata and Results visualizer (#1014)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com> Co-authored-by: Bogdan Gheorghe <112427971+bogdan-galileo@users.noreply.github.com> Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: Jaap van de Loosdrecht <jaap@vdlmv.nl> Co-authored-by: Noobtoss <96134731+Noobtoss@users.noreply.github.com> Co-authored-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>
This commit is contained in:
parent
e799592718
commit
9047d737f4
40 changed files with 576 additions and 280 deletions
|
|
@ -1,9 +1,13 @@
|
|||
from copy import deepcopy
|
||||
from functools import lru_cache
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torchvision.transforms.functional as F
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.yolo.utils import LOGGER, ops
|
||||
from ultralytics.yolo.utils.plotting import Annotator, colors
|
||||
|
||||
|
||||
class Results:
|
||||
|
|
@ -14,22 +18,24 @@ class Results:
|
|||
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
||||
orig_shape (tuple, optional): Original image size.
|
||||
orig_img (tuple, optional): Original image size.
|
||||
|
||||
Attributes:
|
||||
boxes (Boxes, optional): A Boxes object containing the detection bounding boxes.
|
||||
masks (Masks, optional): A Masks object containing the detection masks.
|
||||
probs (torch.Tensor, optional): A tensor containing the detection class probabilities.
|
||||
orig_shape (tuple, optional): Original image size.
|
||||
orig_img (tuple, optional): Original image size.
|
||||
data (torch.Tensor): The raw masks tensor
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, boxes=None, masks=None, probs=None, orig_shape=None) -> None:
|
||||
self.boxes = Boxes(boxes, orig_shape) if boxes is not None else None # native size boxes
|
||||
self.masks = Masks(masks, orig_shape) if masks is not None else None # native size or imgsz masks
|
||||
def __init__(self, boxes=None, masks=None, probs=None, orig_img=None, names=None) -> None:
|
||||
self.orig_img = orig_img
|
||||
self.orig_shape = orig_img.shape[:2]
|
||||
self.boxes = Boxes(boxes, self.orig_shape) if boxes is not None else None # native size boxes
|
||||
self.masks = Masks(masks, self.orig_shape) if masks is not None else None # native size or imgsz masks
|
||||
self.probs = probs if probs is not None else None
|
||||
self.orig_shape = orig_shape
|
||||
self.names = names
|
||||
self.comp = ["boxes", "masks", "probs"]
|
||||
|
||||
def pandas(self):
|
||||
|
|
@ -37,7 +43,7 @@ class Results:
|
|||
# TODO masks.pandas + boxes.pandas + cls.pandas
|
||||
|
||||
def __getitem__(self, idx):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
|
|
@ -53,7 +59,7 @@ class Results:
|
|||
self.probs = probs
|
||||
|
||||
def cpu(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
|
|
@ -61,7 +67,7 @@ class Results:
|
|||
return r
|
||||
|
||||
def numpy(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
|
|
@ -69,7 +75,7 @@ class Results:
|
|||
return r
|
||||
|
||||
def cuda(self):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
|
|
@ -77,7 +83,7 @@ class Results:
|
|||
return r
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
r = Results(orig_shape=self.orig_shape)
|
||||
r = Results(orig_img=self.orig_img)
|
||||
for item in self.comp:
|
||||
if getattr(self, item) is None:
|
||||
continue
|
||||
|
|
@ -118,6 +124,40 @@ class Results:
|
|||
orig_shape (tuple, optional): Original image size.
|
||||
""")
|
||||
|
||||
def visualize(self, show_conf=True, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
|
||||
"""
|
||||
Plots the given result on an input RGB image. Accepts cv2(numpy) or PIL Image
|
||||
|
||||
Args:
|
||||
show_conf (bool): Show confidence
|
||||
line_width (Float): The line width of boxes. Automatically scaled to img size if not provided
|
||||
font_size (Float): The font size of . Automatically scaled to img size if not provided
|
||||
"""
|
||||
img = deepcopy(self.orig_img)
|
||||
annotator = Annotator(img, line_width, font_size, font, pil, example)
|
||||
boxes = self.boxes
|
||||
masks = self.masks.data
|
||||
logits = self.probs
|
||||
names = self.names
|
||||
if boxes is not None:
|
||||
for d in reversed(boxes):
|
||||
cls, conf = d.cls.squeeze(), d.conf.squeeze()
|
||||
c = int(cls)
|
||||
label = (f'{names[c]}' if names else f'{c}') + (f'{conf:.2f}' if show_conf else '')
|
||||
annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
|
||||
|
||||
if masks is not None:
|
||||
im_gpu = torch.as_tensor(img, dtype=torch.float16).permute(2, 0, 1).flip(0).contiguous()
|
||||
im_gpu = F.resize(im_gpu, masks.data.shape[1:]) / 255
|
||||
annotator.masks(masks.data, colors=[colors(x, True) for x in boxes.cls], im_gpu=im_gpu)
|
||||
|
||||
if logits is not None:
|
||||
top5i = logits.argsort(0, descending=True)[:5].tolist() # top 5 indices
|
||||
text = f"{', '.join(f'{names[j] if names else j} {logits[j]:.2f}' for j in top5i)}, "
|
||||
annotator.text((32, 32), text, txt_color=(255, 255, 255)) # TODO: allow setting colors
|
||||
|
||||
return img
|
||||
|
||||
|
||||
class Boxes:
|
||||
"""
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue