ultralytics 8.0.40 TensorRT metadata and Results visualizer (#1014)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Laughing <61612323+Laughing-q@users.noreply.github.com>
Co-authored-by: Bogdan Gheorghe <112427971+bogdan-galileo@users.noreply.github.com>
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
Co-authored-by: Jaap van de Loosdrecht <jaap@vdlmv.nl>
Co-authored-by: Noobtoss <96134731+Noobtoss@users.noreply.github.com>
Co-authored-by: nerdyespresso <106761627+nerdyespresso@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-02-17 20:06:06 +01:00 committed by GitHub
parent e799592718
commit 9047d737f4
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
40 changed files with 576 additions and 280 deletions

View file

@ -18,8 +18,8 @@ TensorFlow.js | `tfjs` | yolov8n_web_model/
PaddlePaddle | `paddle` | yolov8n_paddle_model/
Requirements:
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
$ pip install -r requirements.txt coremltools onnx onnxsim onnxruntime openvino-dev tensorflow-cpu # CPU
$ pip install -r requirements.txt coremltools onnx onnxsim onnxruntime-gpu openvino-dev tensorflow # GPU
Python:
from ultralytics import YOLO
@ -69,13 +69,14 @@ from ultralytics.nn.tasks import DetectionModel, SegmentationModel
from ultralytics.yolo.cfg import get_cfg
from ultralytics.yolo.data.dataloaders.stream_loaders import LoadImages
from ultralytics.yolo.data.utils import IMAGENET_MEAN, IMAGENET_STD, check_det_dataset
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, __version__, callbacks, colorstr, get_default_args, yaml_save
from ultralytics.yolo.utils import (DEFAULT_CFG, LINUX, LOGGER, MACOS, WINDOWS, __version__, callbacks, colorstr,
get_default_args, yaml_save)
from ultralytics.yolo.utils.checks import check_imgsz, check_requirements, check_version, check_yaml
from ultralytics.yolo.utils.files import file_size
from ultralytics.yolo.utils.ops import Profile
from ultralytics.yolo.utils.torch_utils import get_latest_opset, select_device, smart_inference_mode
MACOS = platform.system() == 'Darwin' # macOS environment
CUDA = torch.cuda.is_available()
def export_formats():
@ -229,27 +230,24 @@ class Exporter:
if coreml: # CoreML
f[4], _ = self._export_coreml()
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
LOGGER.warning('WARNING ⚠️ YOLOv8 TensorFlow export support is still under development. '
LOGGER.warning('WARNING ⚠️ YOLOv8 TensorFlow export is still under development. '
'Please consider contributing to the effort if you have TF expertise. Thank you!')
nms = False
f[5], s_model = self._export_saved_model(nms=nms or self.args.agnostic_nms or tfjs,
agnostic_nms=self.args.agnostic_nms or tfjs)
debug = False
if debug:
if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = self._export_pb(s_model)
if tflite or edgetpu:
f[7], _ = self._export_tflite(s_model,
int8=self.args.int8 or edgetpu,
data=self.args.data,
nms=nms,
agnostic_nms=self.args.agnostic_nms)
if edgetpu:
f[8], _ = self._export_edgetpu()
self._add_tflite_metadata(f[8] or f[7])
if tfjs:
f[9], _ = self._export_tfjs()
if pb or tfjs: # pb prerequisite to tfjs
f[6], _ = self._export_pb(s_model)
if tflite or edgetpu:
f[7] = str(Path(f[5]) / (self.file.stem + '_float16.tflite'))
# f[7], _ = self._export_tflite(s_model,
# int8=self.args.int8 or edgetpu,
# data=self.args.data,
# nms=nms,
# agnostic_nms=self.args.agnostic_nms)
if edgetpu:
f[8], _ = self._export_edgetpu(tflite_model=f[7])
if tfjs:
f[9], _ = self._export_tfjs()
if paddle: # PaddlePaddle
f[10], _ = self._export_paddle()
@ -258,13 +256,14 @@ class Exporter:
if any(f):
f = str(Path(f[-1]))
square = self.imgsz[0] == self.imgsz[1]
s = f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not work. Use " \
f"export 'imgsz={max(self.imgsz)}' if val is required." if not square else ''
s = '' if square else f"WARNING ⚠️ non-PyTorch val requires square images, 'imgsz={self.imgsz}' will not " \
f"work. Use export 'imgsz={max(self.imgsz)}' if val is required."
imgsz = self.imgsz[0] if square else str(self.imgsz)[1:-1].replace(' ', '')
data = f"data={self.args.data}" if model.task == 'segment' and format == 'pb' else ''
LOGGER.info(
f'\nExport complete ({time.time() - t:.1f}s)'
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
f"\nPredict: yolo task={model.task} mode=predict model={f} imgsz={imgsz}"
f"\nPredict: yolo task={model.task} mode=predict model={f} imgsz={imgsz} {data}"
f"\nValidate: yolo task={model.task} mode=val model={f} imgsz={imgsz} data={self.args.data} {s}"
f"\nVisualize: https://netron.app")
@ -335,7 +334,7 @@ class Exporter:
check_requirements('onnxsim')
import onnxsim
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
LOGGER.info(f'{prefix} simplifying with onnxsim {onnxsim.__version__}...')
subprocess.run(f'onnxsim {f} {f}', shell=True)
except Exception as e:
LOGGER.info(f'{prefix} simplifier failure: {e}')
@ -358,7 +357,7 @@ class Exporter:
framework="onnx",
compress_to_fp16=self.args.half) # export
ov.serialize(ov_model, f_ov) # save
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
return f, None
@try_export
@ -372,7 +371,7 @@ class Exporter:
f = str(self.file).replace(self.file.suffix, f'_paddle_model{os.sep}')
pytorch2paddle(module=self.model, save_dir=f, jit_type='trace', input_examples=[self.im]) # export
yaml_save(Path(f) / self.file.with_suffix('.yaml').name, self.metadata) # add metadata.yaml
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
return f, None
@try_export
@ -436,7 +435,7 @@ class Exporter:
try:
import tensorrt as trt # noqa
except ImportError:
if platform.system() == 'Linux':
if LINUX:
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
import tensorrt as trt # noqa
@ -482,8 +481,16 @@ class Exporter:
f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and self.args.half else 32} engine as {f}')
if builder.platform_has_fast_fp16 and self.args.half:
config.set_flag(trt.BuilderFlag.FP16)
# Write file
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
# Metadata
meta = json.dumps(self.metadata)
t.write(len(meta).to_bytes(4, byteorder='little', signed=True))
t.write(meta.encode())
# Model
t.write(engine.serialize())
return f, None
@try_export
@ -500,10 +507,10 @@ class Exporter:
try:
import tensorflow as tf # noqa
except ImportError:
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
check_requirements(f"tensorflow{'' if CUDA else '-macos' if MACOS else '-cpu' if LINUX else ''}")
import tensorflow as tf # noqa
check_requirements(("onnx", "onnx2tf", "sng4onnx", "onnxsim", "onnx_graphsurgeon", "tflite_support"),
cmds="--extra-index-url https://pypi.ngc.nvidia.com ")
cmds="--extra-index-url https://pypi.ngc.nvidia.com")
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
f = str(self.file).replace(self.file.suffix, '_saved_model')
@ -514,10 +521,11 @@ class Exporter:
# Export to TF SavedModel
subprocess.run(f'onnx2tf -i {onnx} -o {f} --non_verbose', shell=True)
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
# Add TFLite metadata
for tflite_file in Path(f).rglob('*.tflite'):
self._add_tflite_metadata(tflite_file)
for file in Path(f).rglob('*.tflite'):
self._add_tflite_metadata(file)
# Load saved_model
keras_model = tf.saved_model.load(f, tags=None, options=None)
@ -537,7 +545,7 @@ class Exporter:
try:
import tensorflow as tf # noqa
except ImportError:
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
check_requirements(f"tensorflow{'' if CUDA else '-macos' if MACOS else '-cpu' if LINUX else ''}")
import tensorflow as tf # noqa
# from models.tf import TFModel
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 # noqa
@ -628,11 +636,11 @@ class Exporter:
return f, None
@try_export
def _export_edgetpu(self, prefix=colorstr('Edge TPU:')):
def _export_edgetpu(self, tflite_model='', prefix=colorstr('Edge TPU:')):
# YOLOv8 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
cmd = 'edgetpu_compiler --version'
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
assert LINUX, f'export only supported on Linux. See {help_url}'
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
@ -646,11 +654,11 @@ class Exporter:
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
f = str(self.file).replace(self.file.suffix, '-int8_edgetpu.tflite') # Edge TPU model
f_tfl = str(self.file).replace(self.file.suffix, '-int8.tflite') # TFLite model
f = str(tflite_model).replace('.tflite', '_edgetpu.tflite') # Edge TPU model
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {self.file.parent} {f_tfl}"
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {self.file.parent} {tflite_model}"
subprocess.run(cmd.split(), check=True)
self._add_tflite_metadata(f)
return f, None
@try_export
@ -681,6 +689,7 @@ class Exporter:
f_json.read_text(),
)
j.write(subst)
yaml_save(Path(f) / 'metadata.yaml', self.metadata) # add metadata.yaml
return f, None
def _add_tflite_metadata(self, file):
@ -736,14 +745,6 @@ class Exporter:
populator.populate()
tmp_file.unlink()
# TODO Rename this here and in `_add_tflite_metadata`
def _extracted_from__add_tflite_metadata_15(self, _metadata_fb, arg1, arg2):
# Creates input info.
result = _metadata_fb.TensorMetadataT()
result.name = arg1
result.description = arg2
return result
def _pipeline_coreml(self, model, prefix=colorstr('CoreML Pipeline:')):
# YOLOv8 CoreML pipeline
import coremltools as ct # noqa