Add Open Images Dataset V7 pretrained model usage examples (#17090)
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
036b515fba
commit
901b68aa5c
1 changed files with 29 additions and 0 deletions
|
|
@ -29,6 +29,35 @@ keywords: Open Images V7, Google dataset, computer vision, YOLO11 models, object
|
|||
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-oiv7.pt) | 640 | 34.9 | 596.9 | 2.43 | 44.1 | 167.4 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-oiv7.pt) | 640 | 36.3 | 860.6 | 3.56 | 68.7 | 260.6 |
|
||||
|
||||
You can use these pretrained for inference or fine-tuning as follows.
|
||||
|
||||
!!! example "Pretrained Model Usage Example"
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load an Open Images Dataset V7 pretrained YOLOv8n model
|
||||
model = YOLO("yolov8n-oiv7.pt")
|
||||
|
||||
# Run prediction
|
||||
results = model.predict(source="image.jpg")
|
||||
|
||||
# Start training from the pretrained checkpoint
|
||||
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Predict using an Open Images Dataset V7 pretrained model
|
||||
yolo detect predict source=image.jpg model=yolov8n-oiv7.pt
|
||||
|
||||
# Start training from an Open Images Dataset V7 pretrained checkpoint
|
||||
yolo detect train data=coco8.yaml model=yolov8n-oiv7.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||

|
||||
|
||||
## Key Features
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue