ultralytics 8.2.35 add YOLOv9t/s/m models (#13504)
Co-authored-by: UltralyticsAssistant <web@ultralytics.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
605e7f4f52
commit
8ea945cc8e
10 changed files with 168 additions and 8 deletions
|
|
@ -79,9 +79,9 @@ The performance of YOLOv9 on the [COCO dataset](../datasets/detect/coco.md) exem
|
|||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | mAP<sup>val<br>50 | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|---------------------------------------------------------------------------------------|-----------------------|----------------------|-------------------|--------------------|-------------------|
|
||||
| YOLOv9t | 640 | 38.3 | 53.1 | 2.0 | 7.7 |
|
||||
| YOLOv9s | 640 | 46.8 | 63.4 | 7.2 | 26.7 |
|
||||
| YOLOv9m | 640 | 51.4 | 68.1 | 20.1 | 76.8 |
|
||||
| [YOLOv9t](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9t.pt) | 640 | 38.3 | 53.1 | 2.0 | 7.7 |
|
||||
| [YOLOv9s](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9s.pt) | 640 | 46.8 | 63.4 | 7.2 | 26.7 |
|
||||
| [YOLOv9m](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9m.pt) | 640 | 51.4 | 68.1 | 20.1 | 76.8 |
|
||||
| [YOLOv9c](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9c.pt) | 640 | 53.0 | 70.2 | 25.5 | 102.8 |
|
||||
| [YOLOv9e](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov9e.pt) | 640 | 55.6 | 72.8 | 58.1 | 192.5 |
|
||||
|
||||
|
|
@ -152,10 +152,10 @@ This example provides simple YOLOv9 training and inference examples. For full do
|
|||
|
||||
The YOLOv9 series offers a range of models, each optimized for high-performance [Object Detection](../tasks/detect.md). These models cater to varying computational needs and accuracy requirements, making them versatile for a wide array of applications.
|
||||
|
||||
| Model | Filenames | Tasks | Inference | Validation | Training | Export |
|
||||
| ---------- | --------------------------------- | -------------------------------------------- | --------- | ---------- | -------- | ------ |
|
||||
| YOLOv9 | `yolov9c.pt` `yolov9e.pt` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv9-seg | `yolov9c-seg.pt` `yolov9e-seg.pt` | [Instance Segmentation](../tasks/segment.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| Model | Filenames | Tasks | Inference | Validation | Training | Export |
|
||||
|------------|---------------------------------------------------------|----------------------------------------------|-----------|------------|----------|--------|
|
||||
| YOLOv9 | `yolov9t` `yolov9s` `yolov9m` `yolov9c.pt` `yolov9e.pt` | [Object Detection](../tasks/detect.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
| YOLOv9-seg | `yolov9c-seg.pt` `yolov9e-seg.pt` | [Instance Segmentation](../tasks/segment.md) | ✅ | ✅ | ✅ | ✅ |
|
||||
|
||||
This table provides a detailed overview of the YOLOv9 model variants, highlighting their capabilities in object detection tasks and their compatibility with various operational modes such as [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md). This comprehensive support ensures that users can fully leverage the capabilities of YOLOv9 models in a broad range of object detection scenarios.
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue