Add real-world projects in Ultralytics + guides in Docs (#6695)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
Muhammad Rizwan Munawar 2023-12-02 03:20:14 +05:00 committed by GitHub
parent 9618025416
commit 8c4094e7d9
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
13 changed files with 869 additions and 23 deletions

View file

@ -0,0 +1,130 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import cv2
from ultralytics.utils.plotting import Annotator
class AIGym:
"""A class to manage the gym steps of people in a real-time video stream based on their poses."""
def __init__(self):
"""Initializes the AIGym with default values for Visual and Image parameters."""
# Image and line thickness
self.im0 = None
self.tf = None
# Keypoints and count information
self.keypoints = None
self.poseup_angle = None
self.posedown_angle = None
self.threshold = 0.001
# Store stage, count and angle information
self.angle = None
self.count = None
self.stage = None
self.pose_type = 'pushup'
self.kpts_to_check = None
# Visual Information
self.view_img = False
self.annotator = None
def set_args(self,
kpts_to_check,
line_thickness=2,
view_img=False,
pose_up_angle=145.0,
pose_down_angle=90.0,
pose_type='pullup'):
"""
Configures the AIGym line_thickness, save image and view image parameters
Args:
kpts_to_check (list): 3 keypoints for counting
line_thickness (int): Line thickness for bounding boxes.
view_img (bool): display the im0
pose_up_angle (float): Angle to set pose position up
pose_down_angle (float): Angle to set pose position down
pose_type: "pushup", "pullup" or "abworkout"
"""
self.kpts_to_check = kpts_to_check
self.tf = line_thickness
self.view_img = view_img
self.poseup_angle = pose_up_angle
self.posedown_angle = pose_down_angle
self.pose_type = pose_type
def start_counting(self, im0, results, frame_count):
"""
function used to count the gym steps
Args:
im0 (ndarray): Current frame from the video stream.
results: Pose estimation data
frame_count: store current frame count
"""
self.im0 = im0
if frame_count == 1:
self.count = [0] * len(results[0])
self.angle = [0] * len(results[0])
self.stage = ['-' for _ in results[0]]
self.keypoints = results[0].keypoints.data
self.annotator = Annotator(im0, line_width=2)
for ind, k in enumerate(reversed(self.keypoints)):
if self.pose_type == 'pushup' or self.pose_type == 'pullup':
self.angle[ind] = self.annotator.estimate_pose_angle(k[int(self.kpts_to_check[0])].cpu(),
k[int(self.kpts_to_check[1])].cpu(),
k[int(self.kpts_to_check[2])].cpu())
self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
if self.pose_type == 'abworkout':
self.angle[ind] = self.annotator.estimate_pose_angle(k[int(self.kpts_to_check[0])].cpu(),
k[int(self.kpts_to_check[1])].cpu(),
k[int(self.kpts_to_check[2])].cpu())
self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10)
if self.angle[ind] > self.poseup_angle:
self.stage[ind] = 'down'
if self.angle[ind] < self.posedown_angle and self.stage[ind] == 'down':
self.stage[ind] = 'up'
self.count[ind] += 1
self.annotator.plot_angle_and_count_and_stage(angle_text=self.angle[ind],
count_text=self.count[ind],
stage_text=self.stage[ind],
center_kpt=k[int(self.kpts_to_check[1])],
line_thickness=self.tf)
if self.pose_type == 'pushup':
if self.angle[ind] > self.poseup_angle:
self.stage[ind] = 'up'
if self.angle[ind] < self.posedown_angle and self.stage[ind] == 'up':
self.stage[ind] = 'down'
self.count[ind] += 1
self.annotator.plot_angle_and_count_and_stage(angle_text=self.angle[ind],
count_text=self.count[ind],
stage_text=self.stage[ind],
center_kpt=k[int(self.kpts_to_check[1])],
line_thickness=self.tf)
if self.pose_type == 'pullup':
if self.angle[ind] > self.poseup_angle:
self.stage[ind] = 'down'
if self.angle[ind] < self.posedown_angle and self.stage[ind] == 'down':
self.stage[ind] = 'up'
self.count[ind] += 1
self.annotator.plot_angle_and_count_and_stage(angle_text=self.angle[ind],
count_text=self.count[ind],
stage_text=self.stage[ind],
center_kpt=k[int(self.kpts_to_check[1])],
line_thickness=self.tf)
self.annotator.kpts(k, shape=(640, 640), radius=1, kpt_line=True)
if self.view_img:
cv2.imshow('Ultralytics YOLOv8 AI GYM', self.im0)
if cv2.waitKey(1) & 0xFF == ord('q'):
return
if __name__ == '__main__':
AIGym()

View file

@ -0,0 +1,165 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from collections import defaultdict
import cv2
from ultralytics.utils.checks import check_requirements
from ultralytics.utils.plotting import Annotator, colors
check_requirements('shapely>=2.0.0')
from shapely.geometry import Polygon
from shapely.geometry.point import Point
class ObjectCounter:
"""A class to manage the counting of objects in a real-time video stream based on their tracks."""
def __init__(self):
"""Initializes the Counter with default values for various tracking and counting parameters."""
# Mouse events
self.is_drawing = False
self.selected_point = None
# Region Information
self.reg_pts = None
self.counting_region = None
self.region_color = (255, 255, 255)
# Image and annotation Information
self.im0 = None
self.tf = None
self.view_img = False
self.names = None # Classes names
self.annotator = None # Annotator
# Object counting Information
self.in_counts = 0
self.out_counts = 0
self.counting_list = []
# Tracks info
self.track_history = defaultdict(list)
self.track_thickness = 2
self.draw_tracks = False
def set_args(self,
classes_names,
reg_pts,
region_color=None,
line_thickness=2,
track_thickness=2,
view_img=False,
draw_tracks=False):
"""
Configures the Counter's image, bounding box line thickness, and counting region points.
Args:
line_thickness (int): Line thickness for bounding boxes.
view_img (bool): Flag to control whether to display the video stream.
reg_pts (list): Initial list of points defining the counting region.
classes_names (dict): Classes names
region_color (tuple): color for region line
track_thickness (int): Track thickness
draw_tracks (Bool): draw tracks
"""
self.tf = line_thickness
self.view_img = view_img
self.track_thickness = track_thickness
self.draw_tracks = draw_tracks
self.reg_pts = reg_pts
self.counting_region = Polygon(self.reg_pts)
self.names = classes_names
self.region_color = region_color if region_color else self.region_color
def mouse_event_for_region(self, event, x, y, flags, params):
"""
This function is designed to move region with mouse events in a real-time video stream.
Args:
event (int): The type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
x (int): The x-coordinate of the mouse pointer.
y (int): The y-coordinate of the mouse pointer.
flags (int): Any flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY,
cv2.EVENT_FLAG_SHIFTKEY, etc.).
params (dict): Additional parameters you may want to pass to the function.
"""
# global is_drawing, selected_point
if event == cv2.EVENT_LBUTTONDOWN:
for i, point in enumerate(self.reg_pts):
if isinstance(point, (tuple, list)) and len(point) >= 2:
if abs(x - point[0]) < 10 and abs(y - point[1]) < 10:
self.selected_point = i
self.is_drawing = True
break
elif event == cv2.EVENT_MOUSEMOVE:
if self.is_drawing and self.selected_point is not None:
self.reg_pts[self.selected_point] = (x, y)
self.counting_region = Polygon(self.reg_pts)
elif event == cv2.EVENT_LBUTTONUP:
self.is_drawing = False
self.selected_point = None
def extract_and_process_tracks(self, tracks):
boxes = tracks[0].boxes.xyxy.cpu()
clss = tracks[0].boxes.cls.cpu().tolist()
track_ids = tracks[0].boxes.id.int().cpu().tolist()
self.annotator = Annotator(self.im0, self.tf, self.names)
self.annotator.draw_region(reg_pts=self.reg_pts, color=(0, 255, 0))
for box, track_id, cls in zip(boxes, track_ids, clss):
self.annotator.box_label(box, label=self.names[cls], color=colors(int(cls), True)) # Draw bounding box
# Draw Tracks
track_line = self.track_history[track_id]
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
track_line.pop(0) if len(track_line) > 30 else None
if self.draw_tracks:
self.annotator.draw_centroid_and_tracks(track_line,
color=(0, 255, 0),
track_thickness=self.track_thickness)
# Count objects
if self.counting_region.contains(Point(track_line[-1])):
if track_id not in self.counting_list:
self.counting_list.append(track_id)
if box[0] < self.counting_region.centroid.x:
self.out_counts += 1
else:
self.in_counts += 1
if self.view_img:
incount_label = 'InCount : ' + f'{self.in_counts}'
outcount_label = 'OutCount : ' + f'{self.out_counts}'
self.annotator.count_labels(in_count=incount_label, out_count=outcount_label)
cv2.namedWindow('Ultralytics YOLOv8 Object Counter')
cv2.setMouseCallback('Ultralytics YOLOv8 Object Counter', self.mouse_event_for_region,
{'region_points': self.reg_pts})
cv2.imshow('Ultralytics YOLOv8 Object Counter', self.im0)
# Break Window
if cv2.waitKey(1) & 0xFF == ord('q'):
return
def start_counting(self, im0, tracks):
"""
Main function to start the object counting process.
Args:
im0 (ndarray): Current frame from the video stream.
tracks (list): List of tracks obtained from the object tracking process.
"""
self.im0 = im0 # store image
if tracks[0].boxes.id is None:
return
self.extract_and_process_tracks(tracks)
if __name__ == '__main__':
ObjectCounter()

View file

@ -37,7 +37,7 @@ def is_url(url, check=True):
Defaults to True.
Returns:
bool: Returns True if the string is a valid URL. If 'check' is True, also returns True if the URL exists online.
(bool): Returns True if the string is a valid URL. If 'check' is True, also returns True if the URL exists online.
Returns False otherwise.
Example:
@ -362,7 +362,7 @@ def get_github_assets(repo='ultralytics/assets', version='latest', retry=False):
retry (bool, optional): Flag to retry the request in case of a failure. Defaults to False.
Returns:
tuple: A tuple containing the release tag and a list of asset names.
(tuple): A tuple containing the release tag and a list of asset names.
Example:
```python
@ -392,10 +392,10 @@ def attempt_download_asset(file, repo='ultralytics/assets', release='v0.0.0', **
file (str | Path): The filename or file path to be downloaded.
repo (str, optional): The GitHub repository in the format 'owner/repo'. Defaults to 'ultralytics/assets'.
release (str, optional): The specific release version to be downloaded. Defaults to 'v0.0.0'.
**kwargs: Additional keyword arguments for the download process.
**kwargs (dict): Additional keyword arguments for the download process.
Returns:
str: The path to the downloaded file.
(str): The path to the downloaded file.
Example:
```python

View file

@ -258,6 +258,131 @@ class Annotator:
"""Return annotated image as array."""
return np.asarray(self.im)
# Object Counting Annotator
def draw_region(self, reg_pts=None, color=(0, 255, 0)):
# Draw region line
cv2.polylines(self.im, [np.array(reg_pts, dtype=np.int32)], isClosed=True, color=color, thickness=self.tf + 2)
def draw_centroid_and_tracks(self, track, color=(255, 0, 255), track_thickness=2):
# Draw region line
points = np.hstack(track).astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(self.im, [points], isClosed=False, color=color, thickness=track_thickness)
cv2.circle(self.im, (int(track[-1][0]), int(track[-1][1])), track_thickness * 2, color, -1)
def count_labels(self, in_count=0, out_count=0, color=(255, 255, 255), txt_color=(0, 0, 0)):
tl = self.tf or round(0.002 * (self.im.shape[0] + self.im.shape[1]) / 2) + 1
tf = max(tl - 1, 1)
gap = int(24 * tl) # Calculate the gap between in_count and out_count based on line_thickness
# Get text size for in_count and out_count
t_size_in = cv2.getTextSize(str(in_count), 0, fontScale=tl / 2, thickness=tf)[0]
t_size_out = cv2.getTextSize(str(out_count), 0, fontScale=tl / 2, thickness=tf)[0]
# Calculate positions for in_count and out_count labels
text_width = max(t_size_in[0], t_size_out[0])
text_x1 = (self.im.shape[1] - text_width - 120 * self.tf) // 2 - gap
text_x2 = (self.im.shape[1] - text_width + 120 * self.tf) // 2 + gap
text_y = max(t_size_in[1], t_size_out[1])
# Create a rounded rectangle for in_count
cv2.rectangle(self.im, (text_x1 - 5, text_y - 5), (text_x1 + text_width + 7, text_y + t_size_in[1] + 7), color,
-1)
cv2.putText(self.im,
str(in_count), (text_x1, text_y + t_size_in[1]),
0,
tl / 2,
txt_color,
self.tf,
lineType=cv2.LINE_AA)
# Create a rounded rectangle for out_count
cv2.rectangle(self.im, (text_x2 - 5, text_y - 5), (text_x2 + text_width + 7, text_y + t_size_out[1] + 7), color,
-1)
cv2.putText(self.im,
str(out_count), (text_x2, text_y + t_size_out[1]),
0,
tl / 2,
txt_color,
thickness=self.tf,
lineType=cv2.LINE_AA)
# AI GYM Annotator
def estimate_pose_angle(self, a, b, c):
"""Calculate the pose angle for object
Args:
a (float) : The value of pose point a
b (float): The value of pose point b
c (float): The value o pose point c
Returns:
angle (degree): Degree value of angle between three points
"""
a, b, c = np.array(a), np.array(b), np.array(c)
radians = np.arctan2(c[1] - b[1], c[0] - b[0]) - np.arctan2(a[1] - b[1], a[0] - b[0])
angle = np.abs(radians * 180.0 / np.pi)
if angle > 180.0:
angle = 360 - angle
return angle
def draw_specific_points(self, keypoints, indices=[2, 5, 7], shape=(640, 640), radius=2):
"""Draw specific keypoints for gym steps counting."""
nkpts, ndim = keypoints.shape
nkpts == 17 and ndim == 3
for i, k in enumerate(keypoints):
if i in indices:
x_coord, y_coord = k[0], k[1]
if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:
if len(k) == 3:
conf = k[2]
if conf < 0.5:
continue
cv2.circle(self.im, (int(x_coord), int(y_coord)), radius, (0, 255, 0), -1, lineType=cv2.LINE_AA)
return self.im
def plot_angle_and_count_and_stage(self, angle_text, count_text, stage_text, center_kpt, line_thickness=2):
"""Plot the pose angle, count value and step stage."""
angle_text, count_text, stage_text = f' {angle_text:.2f}', 'Steps : ' + f'{count_text}', f' {stage_text}'
font_scale = 0.6 + (line_thickness / 10.0)
# Draw angle
(angle_text_width, angle_text_height), _ = cv2.getTextSize(angle_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale,
line_thickness)
angle_text_position = (int(center_kpt[0]), int(center_kpt[1]))
angle_background_position = (angle_text_position[0], angle_text_position[1] - angle_text_height - 5)
angle_background_size = (angle_text_width + 2 * 5, angle_text_height + 2 * 5 + (line_thickness * 2))
cv2.rectangle(self.im, angle_background_position, (angle_background_position[0] + angle_background_size[0],
angle_background_position[1] + angle_background_size[1]),
(255, 255, 255), -1)
cv2.putText(self.im, angle_text, angle_text_position, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0),
line_thickness)
# Draw Counts
(count_text_width, count_text_height), _ = cv2.getTextSize(count_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale,
line_thickness)
count_text_position = (angle_text_position[0], angle_text_position[1] + angle_text_height + 20)
count_background_position = (angle_background_position[0],
angle_background_position[1] + angle_background_size[1] + 5)
count_background_size = (count_text_width + 10, count_text_height + 10 + (line_thickness * 2))
cv2.rectangle(self.im, count_background_position, (count_background_position[0] + count_background_size[0],
count_background_position[1] + count_background_size[1]),
(255, 255, 255), -1)
cv2.putText(self.im, count_text, count_text_position, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0),
line_thickness)
# Draw Stage
(stage_text_width, stage_text_height), _ = cv2.getTextSize(stage_text, cv2.FONT_HERSHEY_SIMPLEX, font_scale,
line_thickness)
stage_text_position = (int(center_kpt[0]), int(center_kpt[1]) + angle_text_height + count_text_height + 40)
stage_background_position = (stage_text_position[0], stage_text_position[1] - stage_text_height - 5)
stage_background_size = (stage_text_width + 10, stage_text_height + 10)
cv2.rectangle(self.im, stage_background_position, (stage_background_position[0] + stage_background_size[0],
stage_background_position[1] + stage_background_size[1]),
(255, 255, 255), -1)
cv2.putText(self.im, stage_text, stage_text_position, cv2.FONT_HERSHEY_SIMPLEX, font_scale, (0, 0, 0),
line_thickness)
@TryExcept() # known issue https://github.com/ultralytics/yolov5/issues/5395
@plt_settings()