Add real-world projects in Ultralytics + guides in Docs (#6695)
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
This commit is contained in:
parent
9618025416
commit
8c4094e7d9
13 changed files with 869 additions and 23 deletions
65
docs/en/guides/workouts-monitoring.md
Normal file
65
docs/en/guides/workouts-monitoring.md
Normal file
|
|
@ -0,0 +1,65 @@
|
|||
---
|
||||
comments: true
|
||||
description: Workouts Monitoring Using Ultralytics YOLOv8
|
||||
keywords: Ultralytics, YOLOv8, Object Detection, Pose Estimation, PushUps, PullUps, Ab workouts, Notebook, IPython Kernel, CLI, Python SDK
|
||||
---
|
||||
|
||||
# Workouts Monitoring using Ultralytics YOLOv8 🚀
|
||||
|
||||
Monitoring workouts through pose estimation with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) enhances exercise assessment by accurately tracking key body landmarks and joints in real-time. This technology provides instant feedback on exercise form, tracks workout routines, and measures performance metrics, optimizing training sessions for users and trainers alike.
|
||||
|
||||
## Advantages of Workouts Monitoring?
|
||||
|
||||
- **Optimized Performance:** Tailoring workouts based on monitoring data for better results.
|
||||
- **Goal Achievement:** Track and adjust fitness goals for measurable progress.
|
||||
- **Personalization:** Customized workout plans based on individual data for effectiveness.
|
||||
- **Health Awareness:** Early detection of patterns indicating health issues or overtraining.
|
||||
- **Informed Decisions:** Data-driven decisions for adjusting routines and setting realistic goals.
|
||||
|
||||
## Real World Applications
|
||||
|
||||
| Workouts Monitoring | Workouts Monitoring |
|
||||
|:----------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------:|
|
||||
|  |  |
|
||||
| PushUps Counting | PullUps Counting |
|
||||
|
||||
## Example
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.solutions import ai_gym
|
||||
import cv2
|
||||
|
||||
model = YOLO("yolov8n-pose.pt")
|
||||
cap = cv2.VideoCapture("path/to/video.mp4")
|
||||
|
||||
gym_object = ai_gym.AIGym() # init AI GYM module
|
||||
gym_object.set_args(line_thickness=2, view_img=True, pose_type="pushup", kpts_to_check=[6, 8, 10])
|
||||
|
||||
frame_count = 0
|
||||
while cap.isOpened():
|
||||
success, frame = cap.read()
|
||||
if not success: exit(0)
|
||||
frame_count += 1
|
||||
results = model.predict(frame, verbose=False)
|
||||
gym_object.start_counting(frame, results, frame_count)
|
||||
```
|
||||
|
||||
???+ tip "Support"
|
||||
|
||||
"pushup", "pullup" and "abworkout" supported
|
||||
|
||||
### KeyPoints Map
|
||||
|
||||

|
||||
|
||||
### Arguments `set_args`
|
||||
|
||||
| Name | Type | Default | Description |
|
||||
|-----------------|--------|----------|----------------------------------------------------------------------------------------|
|
||||
| kpts_to_check | `list` | `None` | List of three keypoints index, for counting specific workout, followed by keypoint Map |
|
||||
| view_img | `bool` | `False` | Display the frame with counts |
|
||||
| line_thickness | `int` | `2` | Increase the thickness of count value |
|
||||
| pose_type | `str` | `pushup` | Pose that need to be monitored, "pullup" and "abworkout" also supported |
|
||||
| pose_up_angle | `int` | `145` | Pose Up Angle value |
|
||||
| pose_down_angle | `int` | `90` | Pose Down Angle value |
|
||||
Loading…
Add table
Add a link
Reference in a new issue