Docs improvements and redirect fixes (#16287)

Signed-off-by: UltralyticsAssistant <web@ultralytics.com>
Co-authored-by: UltralyticsAssistant <web@ultralytics.com>
This commit is contained in:
Glenn Jocher 2024-09-15 00:27:46 +02:00 committed by GitHub
parent 02e995383d
commit 887b46216c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
38 changed files with 82 additions and 85 deletions

View file

@ -4,11 +4,11 @@ Welcome to the [Ultralytics](https://www.ultralytics.com/) Models directory! Her
These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms, from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this directory provides a great starting point for your custom model development needs.
To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full details at the Ultralytics [Docs](https://docs.ultralytics.com/models), and if you need help or have any questions, feel free to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full details at the Ultralytics [Docs](https://docs.ultralytics.com/models/), and if you need help or have any questions, feel free to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
### Usage
Model `*.yaml` files may be used directly in the [Command Line Interface (CLI)](https://docs.ultralytics.com/usage/cli) with a `yolo` command:
Model `*.yaml` files may be used directly in the [Command Line Interface (CLI)](https://docs.ultralytics.com/usage/cli/) with a `yolo` command:
```bash
# Train a YOLOv8n model using the coco8 dataset for 100 epochs
@ -35,7 +35,7 @@ model.train(data="coco8.yaml", epochs=100)
## Pre-trained Model Architectures
Ultralytics supports many model architectures. Visit [Ultralytics Models](https://docs.ultralytics.com/models) to view detailed information and usage. Any of these models can be used by loading their configurations or pretrained checkpoints if available.
Ultralytics supports many model architectures. Visit [Ultralytics Models](https://docs.ultralytics.com/models/) to view detailed information and usage. Any of these models can be used by loading their configurations or pretrained checkpoints if available.
## Contribute New Models
@ -43,6 +43,6 @@ Have you trained a new YOLO variant or achieved state-of-the-art performance wit
By contributing to this section, you're helping us offer a wider array of model choices and configurations to the community. It's a fantastic way to share your knowledge and expertise while making the Ultralytics YOLO ecosystem even more versatile.
To get started, please consult our [Contributing Guide](https://docs.ultralytics.com/help/contributing) for step-by-step instructions on how to submit a Pull Request (PR) 🛠️. Your contributions are eagerly awaited!
To get started, please consult our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) for step-by-step instructions on how to submit a Pull Request (PR) 🛠️. Your contributions are eagerly awaited!
Let's join hands to extend the range and capabilities of the Ultralytics YOLO models 🙏!