ultralytics 8.0.158 add benchmarks to coverage (#4432)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
This commit is contained in:
Glenn Jocher 2023-08-20 20:52:30 +02:00 committed by GitHub
parent 495806565d
commit 87ce15d383
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
51 changed files with 352 additions and 482 deletions

View file

@ -4,12 +4,27 @@ import torch
from ultralytics.data import ClassificationDataset, build_dataloader
from ultralytics.engine.validator import BaseValidator
from ultralytics.utils import DEFAULT_CFG, LOGGER
from ultralytics.utils import LOGGER
from ultralytics.utils.metrics import ClassifyMetrics, ConfusionMatrix
from ultralytics.utils.plotting import plot_images
class ClassificationValidator(BaseValidator):
"""
A class extending the BaseValidator class for validation based on a classification model.
Notes:
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'.
Example:
```python
from ultralytics.models.yolo.classify import ClassificationValidator
args = dict(model='yolov8n-cls.pt', data='imagenet10')
validator = ClassificationValidator(args=args)
validator(model=args['model'])
```
"""
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
"""Initializes ClassificationValidator instance with args, dataloader, save_dir, and progress bar."""
@ -92,21 +107,3 @@ class ClassificationValidator(BaseValidator):
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
names=self.names,
on_plot=self.on_plot) # pred
def val(cfg=DEFAULT_CFG, use_python=False):
"""Validate YOLO model using custom data."""
model = cfg.model or 'yolov8n-cls.pt' # or "resnet18"
data = cfg.data or 'mnist160'
args = dict(model=model, data=data)
if use_python:
from ultralytics import YOLO
YOLO(model).val(**args)
else:
validator = ClassificationValidator(args=args)
validator(model=args['model'])
if __name__ == '__main__':
val()