ultralytics 8.0.158 add benchmarks to coverage (#4432)

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Yonghye Kwon <developer.0hye@gmail.com>
This commit is contained in:
Glenn Jocher 2023-08-20 20:52:30 +02:00 committed by GitHub
parent 495806565d
commit 87ce15d383
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
51 changed files with 352 additions and 482 deletions

View file

@ -9,6 +9,19 @@ from ultralytics.utils import ops
class RTDETRPredictor(BasePredictor):
"""
A class extending the BasePredictor class for prediction based on an RT-DETR detection model.
Example:
```python
from ultralytics.utils import ASSETS
from ultralytics.models.rtdetr import RTDETRPredictor
args = dict(model='rtdetr-l.pt', source=ASSETS)
predictor = RTDETRPredictor(overrides=args)
predictor.predict_cli()
```
"""
def postprocess(self, preds, img, orig_imgs):
"""Postprocess predictions and returns a list of Results objects."""
@ -38,7 +51,9 @@ class RTDETRPredictor(BasePredictor):
Args:
im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list.
Return: A list of transformed imgs.
Notes: The size must be square(640) and scaleFilled.
Returns:
(list): A list of transformed imgs.
"""
# The size must be square(640) and scaleFilled.
return [LetterBox(self.imgsz, auto=False, scaleFill=True)(image=x) for x in im]