diff --git a/docs/en/integrations/index.md b/docs/en/integrations/index.md index f94b2955..4b91b18f 100644 --- a/docs/en/integrations/index.md +++ b/docs/en/integrations/index.md @@ -97,6 +97,8 @@ Welcome to the Ultralytics Integrations page! This page provides an overview of - [Rockchip RKNN](rockchip-rknn.md): Developed by [Rockchip](https://www.rock-chips.com/), RKNN is a specialized neural network inference framework optimized for Rockchip's hardware platforms, particularly their NPUs. It facilitates efficient deployment of AI models on edge devices, enabling high-performance inference in real-time applications. +- [Seeed Studio reCamera](seeedstudio-recamera.md): Developed by [Seeed Studio](https://www.seeedstudio.com/), the reCamera is a cutting-edge edge AI device designed for real-time computer vision applications. Powered by the RISC-V-based SG200X processor, it delivers high-performance AI inference with energy efficiency. Its modular design, advanced video processing capabilities, and support for flexible deployment make it an ideal choice for various use cases, including safety monitoring, environmental applications, and manufacturing. + ### Export Formats We also support a variety of model export formats for deployment in different environments. Here are the available formats: diff --git a/docs/en/integrations/seeedstudio-recamera.md b/docs/en/integrations/seeedstudio-recamera.md new file mode 100644 index 00000000..dcad4935 --- /dev/null +++ b/docs/en/integrations/seeedstudio-recamera.md @@ -0,0 +1,110 @@ +--- +comments: true +description: Discover how to get started with Seeed Studio reCamera for edge AI applications using Ultralytics YOLO11. Learn about its powerful features, real-world applications, and how to export YOLO11 models to ONNX format for seamless integration. +keywords: Seeed Studio reCamera, YOLO11, ONNX export, edge AI, computer vision, real-time detection, personal protective equipment detection, fire detection, waste detection, fall detection, modular AI devices, Ultralytics +--- + +# Quick Start Guide: Seeed Studio reCamera with Ultralytics YOLO11 + +[reCamera](https://www.seeedstudio.com/recamera) was introduced for the AI community at [YOLO Vision 2024 (YV24)](https://www.youtube.com/watch?v=rfI5vOo3-_A), [Ultralytics](https://ultralytics.com/) annual hybrid event. It is mainly designed for edge AI applications, offering powerful processing capabilities and effortless deployment. + +With support for diverse hardware configurations and open-source resources, it serves as an ideal platform for prototyping and deploying innovative [computer vision](https://www.ultralytics.com/glossary/computer-vision-cv) [solutions](https://docs.ultralytics.com/solutions/#solutions) at the edge. + + + +## Why Choose reCamera? + +reCamera series is purpose-built for edge AI applications, tailored to meet the needs of developers and innovators. Here's why it stands out: + +- **RISC-V Powered Performance**: At its core is the SG200X processor, built on the RISC-V architecture, delivering exceptional performance for edge AI tasks while maintaining energy efficiency. With the ability to execute 1 trillion operations per second (1 TOPS), it handles demanding tasks like real-time object detection easily. + +- **Optimized Video Technologies**: Supports advanced video compression standards, including H.264 and H.265, to reduce storage and bandwidth requirements without sacrificing quality. Features like HDR imaging, 3D noise reduction, and lens correction ensure professional visuals, even in challenging environments. + +- **Energy-Efficient Dual Processing**: While the SG200X handles complex AI tasks, a smaller 8-bit microcontroller manages simpler operations to conserve power, making the reCamera ideal for battery-operated or low-power setups. + +- **Modular and Upgradable Design**: The reCamera is built with a modular structure, consisting of three main components: the core board, sensor board, and baseboard. This design allows developers to easily swap or upgrade components, ensuring flexibility and future-proofing for evolving projects. + +## Quick Hardware Setup of reCamera + +Please follow [reCamera Quick Start Guide](https://wiki.seeedstudio.com/recamera_getting_started) for initial onboarding of the device such as connecting the device to a WiFi network and access the [Node-RED](https://nodered.org) web UI for quick previewing of detection redsults with the pre-installed Ultralytics YOLO models. + +## Export to cvimodel: Converting Your YOLO11 Model + +Here we will first convert `PyTorch` model to `ONNX` and then convert it to `MLIR` model format. Finally `MLIR` will be converted to `cvimodel` in order to inference on-device + +
+
+