Docs cleanup and Google-style tracker docstrings (#6751)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-12-03 04:12:33 +01:00 committed by GitHub
parent 60041014a8
commit 80802be1e5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
44 changed files with 740 additions and 529 deletions

View file

@ -17,7 +17,7 @@ except (ImportError, AssertionError, AttributeError):
import lap
def linear_assignment(cost_matrix, thresh, use_lap=True):
def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
"""
Perform linear assignment using scipy or lap.lapjv.
@ -27,19 +27,24 @@ def linear_assignment(cost_matrix, thresh, use_lap=True):
use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True.
Returns:
(tuple): Tuple containing matched indices, unmatched indices from 'a', and unmatched indices from 'b'.
Tuple with:
- matched indices
- unmatched indices from 'a'
- unmatched indices from 'b'
"""
if cost_matrix.size == 0:
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
if use_lap:
# Use lap.lapjv
# https://github.com/gatagat/lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
unmatched_a = np.where(x < 0)[0]
unmatched_b = np.where(y < 0)[0]
else:
# Use scipy.optimize.linear_sum_assignment
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y
matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
@ -53,7 +58,7 @@ def linear_assignment(cost_matrix, thresh, use_lap=True):
return matches, unmatched_a, unmatched_b
def iou_distance(atracks, btracks):
def iou_distance(atracks: list, btracks: list) -> np.ndarray:
"""
Compute cost based on Intersection over Union (IoU) between tracks.
@ -62,7 +67,7 @@ def iou_distance(atracks, btracks):
btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes.
Returns:
(np.ndarray): Cost matrix computed based on IoU.
np.ndarray: Cost matrix computed based on IoU.
"""
if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \
@ -81,7 +86,7 @@ def iou_distance(atracks, btracks):
return 1 - ious # cost matrix
def embedding_distance(tracks, detections, metric='cosine'):
def embedding_distance(tracks: list, detections: list, metric: str = 'cosine') -> np.ndarray:
"""
Compute distance between tracks and detections based on embeddings.
@ -91,7 +96,7 @@ def embedding_distance(tracks, detections, metric='cosine'):
metric (str, optional): Metric for distance computation. Defaults to 'cosine'.
Returns:
(np.ndarray): Cost matrix computed based on embeddings.
np.ndarray: Cost matrix computed based on embeddings.
"""
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
@ -105,7 +110,7 @@ def embedding_distance(tracks, detections, metric='cosine'):
return cost_matrix
def fuse_score(cost_matrix, detections):
def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
"""
Fuses cost matrix with detection scores to produce a single similarity matrix.
@ -114,7 +119,7 @@ def fuse_score(cost_matrix, detections):
detections (list[BaseTrack]): List of detections with scores.
Returns:
(np.ndarray): Fused similarity matrix.
np.ndarray: Fused similarity matrix.
"""
if cost_matrix.size == 0: