Docs cleanup and Google-style tracker docstrings (#6751)

Signed-off-by: Glenn Jocher <glenn.jocher@ultralytics.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Glenn Jocher 2023-12-03 04:12:33 +01:00 committed by GitHub
parent 60041014a8
commit 80802be1e5
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
44 changed files with 740 additions and 529 deletions

View file

@ -1,5 +1,3 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
from functools import partial
from pathlib import Path
@ -11,10 +9,11 @@ from ultralytics.utils.checks import check_yaml
from .bot_sort import BOTSORT
from .byte_tracker import BYTETracker
# A mapping of tracker types to corresponding tracker classes
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
def on_predict_start(predictor, persist=False):
def on_predict_start(predictor: object, persist: bool = False) -> None:
"""
Initialize trackers for object tracking during prediction.
@ -27,10 +26,13 @@ def on_predict_start(predictor, persist=False):
"""
if hasattr(predictor, 'trackers') and persist:
return
tracker = check_yaml(predictor.args.tracker)
cfg = IterableSimpleNamespace(**yaml_load(tracker))
assert cfg.tracker_type in ['bytetrack', 'botsort'], \
f"Only support 'bytetrack' and 'botsort' for now, but got '{cfg.tracker_type}'"
if cfg.tracker_type not in ['bytetrack', 'botsort']:
raise AssertionError(f"Only 'bytetrack' and 'botsort' are supported for now, but got '{cfg.tracker_type}'")
trackers = []
for _ in range(predictor.dataset.bs):
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
@ -38,8 +40,14 @@ def on_predict_start(predictor, persist=False):
predictor.trackers = trackers
def on_predict_postprocess_end(predictor, persist=False):
"""Postprocess detected boxes and update with object tracking."""
def on_predict_postprocess_end(predictor: object, persist: bool = False) -> None:
"""
Postprocess detected boxes and update with object tracking.
Args:
predictor (object): The predictor object containing the predictions.
persist (bool, optional): Whether to persist the trackers if they already exist. Defaults to False.
"""
bs = predictor.dataset.bs
path, im0s = predictor.batch[:2]
@ -58,7 +66,7 @@ def on_predict_postprocess_end(predictor, persist=False):
predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1]))
def register_tracker(model, persist):
def register_tracker(model: object, persist: bool) -> None:
"""
Register tracking callbacks to the model for object tracking during prediction.